Pin It

University of South Florida researchers recently developed a novel approach to mitigating electromigration in nanoscale electronic interconnects that are ubiquitous in state-of-the-art integrated circuits. This was achieved by coating copper metal interconnects with hexagonal boron nitride (hBN), an atomically-thin insulating two-dimensional (2-D) material that shares a similar structure as the "wonder material" graphene.

Electromigration is the phenomenon in which an electrical current passing through a conductor causes the atomic-scale erosion of the material, eventually resulting in device failure. Conventional semiconductor technology addresses this challenge by using a barrier or liner material, but this takes up precious space on the wafer that could otherwise be used to pack in more transistors. USF mechanical engineering Assistant Professor Michael Cai Wang's approach accomplishes this same goal, but with the thinnest possible materials in the world, two-dimensional (2-D) materials.

"This work introduces new opportunities for research into the interfacial interactions between metals and ångström-scale 2-D materials. Improving electronic and semiconductor device performance is just one result of this research. The findings from this study opens up new possibilities that can help advance future manufacturing of semiconductors and integrated ," Wang said. "Our novel encapsulation strategy using single-layer hBN as the barrier material enables further scaling of device density and the progression of Moore's Law." For reference, a nanometer is 1/60,000 of the thickness of human hair, and an ångström is one-tenth of a nanometer. Manipulating 2-D materials of such thinness requires extreme precision and meticulous handling.

To read more, click here.