Pin It

Graphene may be among the most exciting scientific discoveries of the last century. While it is strikingly familiar to us—graphene is considered an allotrope of carbon, meaning that it essentially the same substance as graphite but in a different atomic structure—graphene also opened up a new world of possibilities for designing and building new technologies.

The material is two-dimensional, meaning that each "sheet" of is only 1 atom thick, but its bonds make it as strong as some of the world's hardest metal alloys while remaining lightweight and flexible. This valuable, unique mix of properties have piqued the interest of scientists from a wide range of fields, leading to research in using graphene for next-generation electronics, new coatings on industrial instruments and tools, and new biomedical technologies.

It is perhaps graphene's immense potential that has consequently caused one of its biggest challenges—graphene is difficult to produce in large volumes, and demand for the material is continually growing. Recent research indicates that using a liquid copper catalyst may be a fast, efficient way for producing graphene, but researchers only have a limited understanding of molecular interactions happening during these brief, chaotic moments that lead to graphene formation, meaning they cannot yet use the method to reliably produce flawless graphene sheets.

In order to address these challenges and help develop methods for quicker graphene production, a team of researchers at the Technical University of Munich (TUM) has been using the JUWELS and SuperMUC-NG high-performance computing (HPC) systems at the Jülich Supercomputing Centre (JSC) and Leibniz Supercomputing Centre (LRZ) to run high-resolution simulations of graphene formation on liquid copper.

To read more, click here.