Pin It

Three years ago, physicists discovered that two stacked sheets of carbon with a tiny, 1.1-degree twist between them could exhibit a dazzling array of behaviors. Most famously, when cooled to low temperatures, the material conducts electricity with zero resistance.

Researchers raced to figure out why twisted bilayer graphene (as it’s called) becomes a superconductor, with a form of superconductivity that seems unusually robust. Many theorists hoped the discovery would rewrite their understanding of superconductivity, and perhaps even allow researchers to engineer materials capable of sustaining the phenomenon at higher temperatures.

But the intense focus on that twist between the graphene sheets may have been a case of misdirection. A team of physicists announced today at an online conference that they’ve observed superconductivity in a triple-decker stack of graphene with no twists at all. The discovery, led by Andrea Young and Haoxin Zhou of the University of California, Santa Barbara, could reset discussions about superconductivity in graphene. It has led some theorists to suspect that graphene’s superconductivity is the vanilla variety after all.

To read more, click here.