Pin It

The future of quantum computing may depend on the further development and understanding of semiconductor materials known as transition metal dichalcogenides (TMDCs). These atomically thin materials develop unique and useful electrical, mechanical, and optical properties when they are manipulated by pressure, light, or temperature.

In research published today in Nature Communications, engineers from Rensselaer Polytechnic Institute demonstrated how, when the TMDC materials they make are stacked in a particular geometry, the interaction that occurs between particles gives researchers more control over the devices' properties. Specifically, the interaction between electrons becomes so strong that they form a new structure known as a correlated insulating state. This is an important step, researchers said, toward developing quantum emitters needed for future quantum simulation and computing.

"There is something exciting going on," said Sufei Shi, an assistant professor of chemical and biological engineering at Rensselaer, who led this work. "One of the quantum degrees of freedom that we hope to use in is enhanced when this correlated state exists."

To read more, click here.