Pin It

Meeting society's growing energy needs has become a daunting challenge for humanity. Demands for energy are expected to nearly double by the year 2050, while the effects of climate change, caused by the burning of fossil fuels, are already wreaking havoc in the form of droughts, wildfires, floods and other disasters.

Gary Moore, a researcher at the Biodesign Center for Applied Structural Discovery, thinks chemistry will play a vital role in the development of clean solutions to the world's mounting energy dilemma.

In new research appearing on the cover of the journal ChemElectroChem, Moore and his colleagues describe the use of ring-shaped molecules known as porphyrins. Such molecules, among the most abundant pigments in nature, are noted for their ability to speed up or catalyze chemical reactions, including important reactions occurring in living systems.

Among these reactions is the conversion of radiant energy from the sun into chemical energy stored in molecular bonds, a process exploited by plants and photosynthetic microbes. This chemical energy can then be used to fuel the organism's metabolism, through the process of cellular respiration.

To read more, click here.