Text Size

 

"Let us illustrate the problem of signalling with the assistance of the ubiquitous experimenters Alice and Bob. We will place Alice and Bob at some distance apart, and between them there will be a source emitting pairs of entangled particles. To avoid relativistic complications we will assume that Alice, Bob, their detectors, and the particle source are all mutually at rest in an inertial frame (the ‘lab’ frame). Pair after pair of particles are emitted by the source and detected by Alice and Bob's apparatuses, who record their results. Alice and Bob are free to alter the angle of their detectors with each run of the apparatus.

 
What each experimenter will record is an apparently random sequence of ups and downs, like the results of an honest coin repeatedly tossed; and yet, when they compare results afterward, they will note that certain correlations, generally sinusoidal in form, stand between their results. For example, if the particles are spin-1/2 fermions, and if Alice and Bob are measuring spin in a particular direction, then the correlation between their results will be -cos@ where @ is the angle between Alice and Bob's detectors. Sinusoidal correlations like these readily violate mathematical inequalities such as those defined by Bell (1964).  Itamar Pitowsky (1994) showed that the Bell Inequalities are examples of “conditions of possible experience” first written down by George Boole; these are consistency conditions between measurement results on the assumption that the results of one measurement and the way it is carried out does not influence the measurement of the other particle at the time of measurement. This means that the particular sequence of results that Alice and Bob get at their respective detectors could not have been encoded in the particles at the source; for some relative angles their results are too well correlated or anti-correlated for them to be due to local causes built into both particles when they were emitted” Kent Peacock "The No-Signalling Theorems: A Nitpicking Distinction” 
 
Here is the setup
 
Bob is closer to the pair source S than Alice.
 
B — S—————A
 
Bob does not change his settings.
 
Alice at the last moment changes her settings in delayed choice fashion AFTER Bob’s particles in the entangled pairs has already been detected.
 
This is done in pulse fashion so that there is a good statistical sample of particles in each pulse.
 
Each setting (ai,b) b-fixed has random outputs 1,0 for each individual detection.
 
Using the statistical rules of orthodox quantum theory Alice and Bob compare their raw data after the experiment is over and from the fraction of coincidences in each pulse, Bob can infer the sequence of settings a1, a2, …. aN for N pulses, which is the encoded message.
 
It is obvious, since Bob did nothing at all,  that Alice’s free will choices of settings a1, a2, …. aN for N pulses  (which is the message) is the active future cause of the back-from-the-future coincidences, unless you want a paranoid conspiracy theory.
 

 

Now of course this is not Valentini’s “signal nonlocality” that is a larger theory violating orthodox quantum theory the way general relativity violates special relativity globally though not locally. With Valentini’s PQM extension of QM Bob can know in advance what Alice will choose even before she chooses it without doing the hindsight correlation analysis. However, any attempt by Bob to cause a paradox will fail either for reasons given by Thorne and Novikov or by David Deutsch.
Category: MyBlog

Categories ...

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner