Text Size
Facebook Twitter More...


On Sep 11, 2010, at 9:52 PM, Paul Zielinski wrote:

Yes it is a very basic example, but it serves to show that there need not be anything mysterious about the physics inside a volume being "encoded" in the physics occurring at an enclosing boundary. In the case of the divergence theorem, the key is a simple conservation principle. My general point here is that once it is recognized that the gravitational vacuum is a physical system with objective physical properties, it is no suprise that such properties include thermodynamic ones. Once that is admitted, then there is no reason why a thermodynamic holographic principle should  not be understood in terms of some more basic intuitively transparent principle, as in the simple example of the divergence theorem in fluid mechanics.

Yes, I agree, however on the cosmic scale the important boundary is in our future not our past! This is what is missing from all the papers in the field.
On Sep 11, 2010, at 1:57 PM, Paul Zielinski wrote:
Exactly.
On Sat, Sep 11, 2010 at 1:55 PM, Brian Josephson wrote:
--On 11 September 2010 13:48:14 -0700 Paul Zielinski wrote:
Naive question: Is Gauss' Theorem (Divergence Theorem) a holographic
principle?

Naive answer: there's something called Green's theorem which tells you the potential in the interior of a region if you know it on the boundary, assuming Laplace's eqn. applies.  So you might surmise that the holographic principle might apply in any sufficiently constrained situation.  Is there more to it than that?

Brian
* * * * * * *    Prof. Brian D. Josephson :::::::: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Mind-Matter * Cavendish Lab., JJ Thomson Ave, Cambridge CB3 0HE, U.K.
* Unification *   voice: +44(0)1223 337260 fax: +44(0)1223 337356
*   Project   *       WWW: http://www.tcm.phy.cam.ac.uk/~bdj10
* * * * * * *

Clearly, Gauss's theorem etc is related to the hologram principle, it is the poor boy's version.

The more general theorem is in terms of Cartan's generalized Stoke's theorem

http://en.wikipedia.org/wiki/Stokes'_theorem

 (dw|W) = (w|&W)

where little omega w is a p-form, d^2 = 0, d(little omega) is a p+1 form, BIG Omega W is a p+1 co-form (domain of integration or "chain)

&(BIG Omega) is the p-coform boundary of BIG Omega. d & are dual.

The quasi-Dirac (BRA|KET) is the de Rham integral.

Quite, obviously if little omega w is a geometrodynamical field like a gravitational tetrad 1-form then d(tetrad) is something like a torsion field 2-form.

However, we need to use the "covariant" BIG D (in spite of what the Captain of the Pinafore sings ;-) ).

HMS Pinafore by W. S. Gilbert and Arthur Sullivan
Jun 4, 2005 ... I never, never use, Whatever the emergency; Though "bother it" I may. Occasionally say, I never use a big, big D —. Chorus. What, never? ...
math.boisestate.edu

D = d + (spin connection)/

D^2 =/= 0 even though d^2 = 0.

So we have something like a HOLOGRAM SURFACE 2-form D(gravity tetrad) with an interior BULK 3-form D^2(gravity tetrad) =/= 0 because of the SPIN CONNECTION. This looks something like a hologram principle for geometrodynamics?

However, not any Damn boundary surface will do the trick. It must be a causal horizon in curved spacetime with pixelated thermodynamics area/entropy & conjugate Hawking temperature as in Tamara Davis's Fig 1.1 (2004 PhD online).

All the pseudo-physics nonsense of using holography in 5D and more seems silly to me unless they actually explain some real data in particle physics that cannot be explained otherwise - if so I will eat my words and change my opinion.

Category: MyBlog

Categories ...

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner