You are here:
Home Jack Sarfatti's Blog Entanglement Signaling in Kondo Effect, Photosynthesis?

The non-orthogonal LCAO orbitals may play a role there.*Scientists have further realized that the Kondo effect results from a relationship between electrons known as "entanglement" in which the quantum state of one electron is tied to those of neighboring electrons, even if the particles are later separated by considerable distances. In the case of Kondo effect, a trapped electron is entangled in a complex manner with a cloud of surrounding electrons.
Researchers have been intrigued by the Kondo effect in part because understanding how a trapped electron becomes entangled with its environment could help overcome barriers to quantum computing, which could lead to far more powerful computers than currently exist.*

http://www.sciencedaily.com/releases/2011/06/110629132544.htm

When I was at UCSD with the Benford brothers in the late 60's Walter Kohn and Harry Suhl were very interested in the Kondo effect. Too bad the connection to entanglement was not understood back then. Also in photosynthesis and no doubt many biological processes.

On Jul 3, 2011, at 9:56 PM, JACK SARFATTI wrote:

this one looks most relevant

A. O. Mitrushenkov, Guido Fano, Roberto Linguerri, Paolo Palmieri

(Submitted on 3 Jun 2003)

The generalization of Density Matrix Renormalization Group (DMRG) approach as implemented in quantum chemistry, to the case of non-orthogonal orbitals is carefully analyzed. This generalization is attractive from the physical point of view since it allows a better localization of the orbitals. The possible implementation difficulties and drawbacks are estimated. General formulae for hamiltonian matrix elements useful in DMRG calculations are given.

Comments: 14 pages

Subjects: Strongly Correlated Electrons (cond-mat.str-el)

Cite as: arXiv:cond-mat/0306058v1 [cond-mat.str-el]

Submission history

From: Roberto Linguerri [view email]

[v1] Tue, 3 Jun 2003 10:02:27 GMT (15kb)

However, none of them directly address our problem of entanglement signals. However, if these non-orthogonal LCAO orbitals are physically significant it might explain the nonlocal effects in photosynthesis and I bet in many complex systems not in thermodynamic equilibrium as entanglement signaling? Also Hameroff's microtubules etc.

On Jul 3, 2011, at 4:34 PM, Paul Zielinski wrote:

However, naively speaking it seems to me that if the trace of a density matrix, or of the product of a density matrix and an "observable", is only invariant under unitary transformations, then applying a non-unitary transformation to get from an orthogonal basis to a non- orthogonal basis representation necessarily changes the physical meaning of the trace.

Isn't that what Kastner is saying here? How do you answer that?

Simple, I only claimed that the initial choice of a non-orthogonal basis is preserved under unitary transformations. I never invoked a non-unitary transformation from an orthogonal to a non-orthogonal basis, though that is also of interest. It is another story.

On 7/3/2011 4:13 PM, Jack Sarfatti wrote:

No I don't think it's that simple. Sure, if you use spins then the eigenstates are orthogonal and no FTL signal. We all agree on that. Simply because we maybe cannot do it with polarization entanglements does not mean we can't do it with other degrees of freedom.

The Glauber states are a different story. Suppose mean n i.e. is small order of 1 or 2

z = ^1/2e^i@

the point is that there is coherence between the vacuum |0>, and all states |1>, |2> ....

but the peak is at with a Poisson distribution. The coherence properties are qualitatively different from that of a sharp n Fock state - though not so different when is small agreed.

Even when >> 1 it is a mistake to think of it as a classical EM wave in the sense of Maxwell theory prior to laser beams.

I think Roy Glauber's original papers explain why. I need to refresh my memory on this from the 1960's.

Coherent microwaves are close to Glauber states, but not ordinary optical sources that are not lasers.

Glauber states and their squeezed variations have properties above and beyond their non-laser cousins e.g. from an incandescent lamp etc.

From: Ruth Elinor Kastner To: Jack Sarfatti Sent: Sun, July 3, 2011 12:38:36 PM

Subject: RE: The issue of small n

RK:

where we're pretty sure it can't be done.

JS: All you sort of showed was that there was allegedly no way to prepare an over-complete basis of spin states of sharp n. Lasers show how to prepare many-photon states as Glauber states all with same polarization. The issue is then how they can entangle. Can we entangle laser beams with opposite momenta Fourier components as in the original EPR all with same polarizations? That's what I assumed in the toy model.

________________________________________

From: Jack Sarfatti [This email address is being protected from spambots. You need JavaScript enabled to view it.]

Sent: Sunday, July 03, 2011 3:00 PM

To: Ruth Elinor Kastner

Cc: nick herbert; david kaiser; Saul-Paul Sirag

Subject: The issue of small n

Assuming I did not make an error:

Large is not needed

Even small works in principle, though perhaps with a much smaller signal to noise ratio?

If there is large n then only the constructive peaks contribute to the non-orthogonality

If n is small then more relative phases @ contribute

= e^-(1-cos@(x'))

this formula of mine may be wrong, I am not sure. It has nice properties however as a comb of Dirac delta functions when ---> infinity at @ = integer multiples of 2pi (constructive interference of the Young double slit fringes).

where

= x' integral over the screen of we also need

= x' integral over the screen of e^i@(x)

On Jul 3, 2011, at 9:03 AM, Ruth Elinor Kastner wrote:

RK:

JS: Exactly. For some reason Nick Herbert took umbrage at that.

RK:

JS: It's too simple to say large means classical waves. That's like saying the superfluid is a giant classical wave. In other words there is a distinction between macro-quantum coherent waves and classical waves of the same that shows up in the coherence correlation functions e.g. see modern books on quantum optics (or even Wikipedia).

In any case we agree this is a valid question that deserves careful investigation. I am not aware if any such work has been done?

Category: MyBlog

Written by Jack Sarfatti

Published on Monday, 04 July 2011 11:17

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner

- November 2015(1)
- January 2015(1)
- December 2014(1)
- August 2014(2)
- July 2014(2)
- June 2014(2)
- May 2014(1)
- April 2014(6)
- March 2014(6)
- February 2014(1)
- January 2014(3)
- December 2013(5)
- November 2013(8)
- October 2013(13)
- September 2013(8)
- August 2013(12)
- July 2013(3)
- June 2013(32)
- May 2013(3)
- April 2013(6)
- March 2013(6)
- February 2013(15)
- January 2013(5)
- December 2012(15)
- November 2012(15)
- October 2012(18)
- September 2012(12)
- August 2012(15)
- July 2012(30)
- June 2012(13)
- May 2012(18)
- April 2012(12)
- March 2012(28)
- February 2012(15)
- January 2012(25)
- December 2011(29)
- November 2011(30)
- October 2011(39)
- September 2011(22)
- August 2011(41)
- July 2011(42)
- June 2011(24)
- May 2011(13)
- April 2011(13)
- March 2011(15)
- February 2011(17)
- January 2011(31)
- December 2010(19)
- November 2010(22)
- October 2010(31)
- September 2010(41)
- August 2010(30)
- July 2010(27)
- June 2010(12)
- May 2010(20)
- April 2010(19)
- March 2010(27)
- February 2010(34)