Text Size
Facebook Twitter More...

The trickiness of deSitter spacetime

From Bohr's Quantum to Future Horizon Hologram Computer Screen Complementarity
"The Question is: What is The Question?" 
J. A. Wheeler from Bohr's to Horizon Hologram Computer Screen Complementarity
From Wickedpedia below, but not as above:
Where we are at r = 0 - the frequency shift formula here is

dt = invariant


ds(0)/goo(0)^1/2 = ds(r)/g00(r)^1/2

frequency = 1/ds

1/f(0)goo(0)^1/2 = 1/f(r)g00(r)^1/2

f(r)/f(0) = [goo(0)/goo(r)]^1/2 ---> (1 - / ^2/3)^-1/2 ---> infinity at our future horizon

This is an infinite blue shift for the static LNIF at our future horizon where 1 - / ^2/3 = 0 detecting light signal from us at r = 0 along its past light cone that connects with our future light cone. Similarly the advanced wave back from our future will be infinitely redshifted. However, there is complete cancellation in the Cramer transaction, the return wave in the Novikov loop is always the same frequency as the offer wave no matter what set of observer-participators do the measurements. Each set will have a consistent description - though not the same description.

This is in contrast to us outside a black hole where we as static LNIF are at r ---> infinity

f(r)/f(infinity) = (1 - 2GM/c^2r)^-1/2 ---> infinity at the horizon, i.e. we see zero frequency at r = infinity, i.e.  infinite red shift for a retarded wave coming from the black hole horizon along our past light cone.
There are other sets of observers - not all of them are physically interesting. The math allows more choices than are physically convenient. Note that Wickedpedia does not use the conformal observers that Hoyle and Narlikar use here in 4)

4) Note the issue of the red and blue shifts is very tricky depending on the state of acceleration of the absorber detectors.
The cosmological red shift z is, for the de Sitter (dS) metric relative to us at proper time zero
1 + z = (wavelength at co-moving absorber)/(wavelength at comoving emitter) = e^/(proper time at absorber) ---> infinity at our future horizon.
To see the connection with the conformal time diagram Fig 1.1
Conformal time tau = /^-1/2[1 - e^-/^1/2proper time)]
infinite proper time at our future horizon is finite conformal time 
tau = /^-1/2
The conformally flat dS metric is
ds^2 = (1 - /^1/2tau)^-1[Minkowski metric]
---> infinity at the future event horizon consistent with zero frequency.
This is for co-moving observers in the accelerating Hubble expansion flow.
Static LNIF observers see something entirely different at fixed r where
g00 = 1 - / ^2 = -1/grr
static LNIFs see an infinite blue shift of light coming at r = 0 as they adiabatically approach r --- /^-1/2
indeed, their real tensor covariant acceleration ~ Unruh temperature needed to stay at fixed r is
g(r) = 2c^2/ (1 - / ^2)^-1/2 ---> infinity at the future horizon.
This is an example of horizon complementarity - one has to specify precisely the total experimental arrangement to get sensible answers not only in quantum theory, but also in Einstein's theory of curved space-time gravity.

Category: MyBlog

Categories ...

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner