Text Size
Facebook Twitter More...



Begin forwarded message:

From: JACK SARFATTI <This email address is being protected from spambots. You need JavaScript enabled to view it.>
Subject: [Starfleet Command] Antony Valentini update & string theorists strike it rich [3 Attachments]
Date: July 31, 2012 1:30:34 PM PDT
To: Exotic Physics <This email address is being protected from spambots. You need JavaScript enabled to view it.>
Reply-To: This email address is being protected from spambots. You need JavaScript enabled to view it.

Chown, M., 2002, Core reality, New Scientist

An Interview with Antony Valentini, 202, Metanexus

Antony Valentini , Wikipedia

Towler, M., 2009, Why does nobody like pilot-wave theory?

Valentini’s book project

References

[1] Valentini, A., Subquantum Information and Computation. Pramana Journal of Physics, 2002. 59(2): p. 269-277. DOI: 10.1007/s12043-002-0117-1. Available from: http://arxiv.org/abs/quant-ph/0203049.

http://cordus.wordpress.com/tag/antony-valentini/


String Theorists get biggest new science prize - Lubos Motl not on the list yet ;-)
by Philip Gibbs
Yuri Milner http://en.wikipedia.org/wiki/Yuri_Milner is a Russian hi-tech investor who dropped out of physics classes as a student. He must have done quite well with his investments because he has just given away $27,000,000 in prizes to nine physicists in $3,000,000 chunks. He plans to do the same every year making his the biggest recurring science prize of them all. Recipients of the prize this year which is given in fundamental physics are Ed Witten, Alan Guth, Nima Arkani-Hamed, Jaun Maldacena, Nathan Seiberg, Maxim Kontsevich, Ashoke Sen, Alexei Y. Kitaev and Andre Linde.

Past winners will select future winners so we can expect to see a lot of rich people in String theory and cosmology in the coming years.

http://wp.me/pPg89-11P

String Theory returns to symmetry
by Philip Gibbs
The strings 2012 conference has finished and it is great to see that all the talks are online as slides and videos. Despite what you hear from some quarters, string theory is alive and progressing with many of the brightest young people in physics still wanting to do strings. Incredibly the next three strings conferences in Korea, US and India are already being organised. How many conference series have that many groups keen to organise them?

It has become a tradition for David Gross to give some kind of outlook talk at these conferences and this time he said there were three questions he would like to see answered in his lifetime

How do the forces of nature unify?
How did the universe begin and how will it end?
What is string theory?
The last of these questions is one he has been asking for quite a few years now. We know string theory only as a small set of perturbative formulations linked together by non-perturbative dualities. There has to be an underlying theory based on some unifying principle and it is important to find it if we are to understand how string theory works at the all-important Planck scale. This time Gross told us that he has heard of something that may answer the question. Firstly he now thinks the correct question to ask is "What are the underlying symmetries of string theory?" and he thinks that work on higher spin symmetries could lead to the answer. What is this about?

For about 16 years it has been known that an important element of quantum gravity is the holographic theory. This says that in order to avoid information loss by black holes the amount of information in any volume of space must be bounded by the area of a surface that surrounds it in Planck units. This might mean that the theory in the bulk of spacetime is equivalent to a different theory on the boundary.

Jack Sarfatti Comment - WHEN IS THE BOUNDARY? We have two cosmic boundaries past and future.



Tamara Davis Ph.D. based on her Fig 1.1 with my Wheeler-Feynman addition.


How can that happen? How can it be that all the field variables in the volume of spacetime only carry an amount of information that can be contained on the surface. We can reason that measurement below the Planck distance is not possible, but even then there should be at least a few valid field parameters for each Planck volume of space. If the holographic principle is right there must be a huge amount of redundancy in this volumetric description of field theory. Redundancy can be taken to imply symmetry. Each degree of symmetry or dimension of the group Lie algebra tells us that one field variable is redundant and can be taken out by gauge fixing it. In gauge theories we get one set of redundant parameters for each point in spacetime, but if the holographic principle is correct there must be a redundancy for almost every field variable in the bulk of spacetime and we will need it to be supersymmetry to deal with the fermions. I call this complete symmetry. It means that the fields of the theory are given by a single adjoint representation of the symmetry. This does not happen in normal gauge theories or in general relativity or even supergravity, but it does happen in Chern-Simons theory in 3D which can be reduced to a 2D WZW model on the boundary, so perhaps something is possible.

If there is symmetry for every degree of freedom in the bulk then the symmetries must match the spin characteristics of the fields. Supergravity only has symmetries corresponding to spin half and spin one fields but it has fields from spin zero scalars up to spin two. String theory goes even further with higher excitations of the string providing an infinite sequence os possible states with unlimited spin. This is why the idea of higher spin symmetries is now seen as a possible solution to the problem.

Surprisingly the idea of higher spin symmetry as a theory of quantum gravity is far from new. It goes back to the 1980s when it was founded by Vasiliev and Fradkin. It is a difficult and messy idea but recent progress means that it is now becoming popular both in its own right and as a possible new understanding of string theory.

There is one other line of development that could lead to a new understanding of string theory, namely the work on supersymmetry scattering amplitudes. Motl has been following this line of research which he calls the twistor mini-revolution for some time and has a nice summary of the conference talk on the subject by Nima Arkani-Hamed. It evolved partly out of the need to calculate scattering amplitudes for the LHC where people noticed that the long pages of solutions could be simplified to some very short expressions. After much thought these expressions seem to be about permutations and Grassmanians with things like infinite dimensional Yangian symmetry playing a big role. Arkani-Hamed believes that this is also applicable to string theory and could explain the holographic principle. The Grassmanians also link nicely to algebraic geometry and possibly work on hyperdeterminants and qubits.

I have to confess that as an undergraduate at Cambridge University in the late 1970s I was completely brainwashed into the idea that symmetry is the route to the underlying principles of nature. At the time the peak of this idea was supergravity in higher dimensions and Stephen Hawking who had just been inaugurated into the Lucasian chair at Trinity college was its greatest advocate. When string theory took over shortly after people looked for symmetry principles there too, but without convincing success. It is true that there are plenty of symmetries in string theory including supersymmetry of course, but different sectors of string theory have different symmetry, so symmetry seems more emergent than an underlying principle. I think the generations of undergraduates after mine were given a much more prosaic view of the role of symmetry and they stopped looking out for it as a source of deep principles.

Due to my brainwashing I have never been able to get over the idea that symmetry will play a huge role in the final theory. In the 1990s I developed my own idea of how infinite dimensional symmetries could describe string theory in a pregeometric phase. The permutation group played a central role in those ideas and was extended to larger string inspired groups with the algebra of string creation operators generating also the Lie algebra of the symmetry. Now that I know about the importance of complete symmetry and higher spin symmetry I recognise that these aspects of the theory could also be significant. Perhaps it is just a matter of time now before string theorists finally catch up with what I did nearly twenty years ago :)

Philip Gibbs | July 31, 2012 at 9:49 am | Categories: Conference, String Theory | URL:http://wp.me/pPg89-11B



Category: MyBlog

Categories ...

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner