Text Size

Stardrive



typo correction missing i in the exponential
On Jun 29, 2011, at 8:50 PM, JACK SARFATTI wrote:


Therefore, the complex number control parameter at A

(A1|A2) ~ exp{ - (1/2)[(n1) + (n2)  - 2(n1n2)^1/2e^i(@1 - @2)]} =/= 0

Therefore, the fringe visibility at the receiver B screen at points x' can be computed from the local cross terms

(A1|A2)(B1|x')(x'|B2) + cc


Let n1 = n2 = n equal intensity at the transmitter A slits.

(A1|A2) ~ exp{ - n[(1  - e^i(@1 - @2)]} + exp{ - n[(1  - e^-i(@1 - @2)]}


& = @1 - @2

(A1|A2) ~ exp{ - n[(1  - cos& - isin&)} + exp{ - n[(1  - cos& + isin&)}

~ e^-n(1 - cos&){e^insin& + e-insin&}

~ e^-n(1 - cos&)2cos(nsin&)

as n increases we want & approaching zero to prevent the receiver interference terms from getting too small.

~ 2e^-n&^2/2cos(n&)