Text Size

Stardrive

Tag » Einstein's curved spacetime gravity

 

On Apr 3, 2014, at 2:09 PM, Paul Zelinsky  wrote:

"Also, what do you think the Minkowski fiber bundle represents in modern formulations of GR? It represents a local mapping of the curved base space inner products determine by g_uv onto the Minkowski fibers defined by the globally flat Minkowski metric n_uv."
To which I replied:
 
That’s precisely what I mean by LNIF <—> LIF (both local frames COINCIDENT)
 
frame field for LNIF is eu(LNIF) with curvilinear metric guv(LNIF).
 
One can always find LNIFs where in Taylor series about origin 
 
g^u^v(LNIF) ~ n^u^v(Minkowski) + {Levi-Civita Connection}^u^vw&x^w + {Riemann Curvature Tensor}^u^vwl&x^w&x^l + ….
 
ds^2 = guv(LNIF)e^u(LNIF)e^v(LNIF)
 
frame field for LIF (Cartesian coordinates a must as Einstein stipulates in his papers) eI(LIF)  tangent bundle fiber metric Taylor expansion is
 
n^I^J(LIF) = n^I^J(Minkowsk) + {Riemann Curvature Tensor}^I^JKL&x^K&x^L + ….
 
ds^2 = nIJ(LIF)e^I(LIF)e^J(LIF)
 
Small font indices u,v ... are in the LNIF base space
 
Caps I,J are in the LIF fiber
 
The tetrad transformation is
 
e^u(LNIF) = e^uIe^I(LIF) etc.
 
EEP means that
 
{Levi-Civita Connection}^I^JK = 0
 
though in general
 
{Riemann Curvature Tensor}^I^JK =/= 0
 
ARTIFICAL (FIRST ORDER NON-TIDAL) GRAVITY FIELDS IN SENSE OF EINSTEIN AND NEWTON CORRESPOND TO
 
{Levi-Civita Connection}^u^vw =/= 0
 
Riemann Curvature Tensor}^I^JKL = 0
 
REAL GRAVITY FIELDS IN THE SENSE OF MISNER, THORNE AND WHEELER (SECOND ORDER WEYL TIDAL VACUUM + RICCI MATTER COMPRESSION) CORRESPOND TO
 
Riemann Curvature Tensor}^I^JKL =/= 0
 
Note that e^I(LIF) is a set of 4-vectors with components e^Iu
 
e^u(LNIF) is a set of 4-vectors with components e^uI
 
e^uIe^Iv = kronecker delta uv etc. ORTHOGONAL GROUP O(1,3)
 
ds^2 = nIJ(LIF)e^Ie^J = guv(LNIF)e^ue^v
 
LIF Alice and LNIF Bob are COINCIDENT
 
LIF Alice has zero proper acceleration
 
LNIF Bob has non-zero proper acceleration
 
ds is invariant space interval between 2 neighboring events measured simultaneously by both Alice and Bob.
 
Since we impose COINCIDENCE no problem with simultaneity.
 
Also clock postulate that proper acceleration of clocks in LNIF can be synchronized to clocks in LIF if they are coincident.

 

On Feb 8, 2014, at 1:23 AM, "jfwoodward@juno.com" wrote:

For those of you who are trying to figure out what Jack and Paul are arguing about, sometimes on this list again, the basic issue, put simply, is whether gravitational fields are present in spatially flat spacetimes.  Jack says no.  That non-vanishing spatial curvature must be present if gravity is present.


JS: Jim is muddling my position.

1) Real gravity fields must have curvature.

2) Artificial gravity fields exist without curvature.

3) Einstein's Equivalence Principle (EEP) is: imagine you are inside an elevator with no windows.

Situation A: Elevator is standing still on surface of Earth. The reaction force (radially inward) of your body down on the scale is your weight

W = (your inertia in kg)10 meters per sec^2

Your inertia is

m = E/c^2

E is your total energy in Joules

c = 3 x 10^8 meters/sec^2

In Einstein's GR you have an upward net non-zero off-geodesic proper tensor acceleration (radially outward) g = DV/dt = 10 meters per sec^2 in order to stand still (hovering static LNIF) in the Earth's curvature field. Your world line is not a geodesic of the Earth's curvature field.

V = 0 and dV/dt = 0 in the hovering static LNIF

g = - {LNIF}V0^2 = + GMEarthr/r^3 radially outward

The action-reaction pair of electrical contact forces of Newton's third law is LOCAL having no astrological magic influence from the distant stars. It is caused by local U1 electromagnetic gauge invariance + quantum field theory.

WHEELER-FEYNMAN RADIATION REACTION IS NOT IN PLAY HERE - THERE IS NO RADIATION.

dP/dt = 0 P = total charge momentum + EM field momentum

= mV + (e/c)A

From quantum field theory, the local U1 gauge transformation is simply mostly the exchange of a near field spacelike virtual photon between the charge e of inertia m and the EM field A coincident with the charge.

The dominating Feynman diagram is >---|

> = electron world line

--- = virtual spacelike photon world line

| = Glauber macro-quantum coherent state of virtual photons order parameter describing the near field A

A is exactly like the Bose-Einstein condensate reservoir in superfluid helium it is also analogous to the Higgs vacuum field - these are all examples of spontaneous broken continuous symmetry groups of the dynamical action.

note subject of my PhD was "Local Gauge Invariance in the Theory of Superfluids" 1969 UCR

Formally the internal symmetry local U1 gauge transformation is

mV -> mV' = mV + hGradS

S = quantum phase of the charge's information BIT field.

A -> A' = A - (hc/e)GradS

Therefore, the total canonical momentum P of the Hamiltonian for minimal QED coupling is GAUGE INVARIANT

P -> P' = mV + hGradS + (e/c)A - hGradS = P

dP/dt = 0

The formal U1 internal symmetry local gauge transformation actually describes the transfer of a virtual photon from the classical near EM field to the charge and vice versa! It's a quantum field virtual dynamical process in space-time and it obviously implements Newton's 3rd Law that the total momentum of the system of interest is LOCALLY CONSERVED.

Change in momentum of charge + change in momentum of near field = 0

The radially outward real force pushing the charge off a timelike geodesic is

F = hGradS/&t

The radially inward real reaction force of the charge back on the source of the near field A is

- F = -hGradS/&t

this radially inward reaction force causes the pointer of the scale to show weight.


&E&t < h for virtual photon (Heisenberg uncertainty principle)

Situation B: the elevator is properly accelerating at 10 meters per sec^2 in any direction in flat empty spacetime.

The observer inside the elevator cannot tell whether he is out in empty space or sitting still on surface of Earth.

We assume of course that he has no windows and no tidal curvature measuring capability.

Therefore, subject to these conditions one cannot distinguish artificial non-tidal gravity defined as the Levi-Civita connection from the non-tidal gravity field associated with tidal curvature.
 

JW: Paul says yes.  That spatially flat spacetime does not preclude the presence of gravity.  That Paul is right should be obvious from the fact that general relativity is predicated on the assumption that in sufficiently small regions of spacetime, the Minkowski metric (spatially flat) applies.


JS: Jim, you have totally muddled two different meanings of the ambiguous term "gravitational field". Also you are dead wrong. You have made a very elementary error.

Your "the Minkowski metric (spatially flat) applies"

The Minkowski metric is flat in the 4D sense, not only in the 3D sense.

Your argument here is a non sequitur

"Non sequitur (Latin for "it does not follow"), in formal logic, is an argument in which its conclusion does not follow from its premises.[1] In a non sequitur, the conclusion could be either true or false, but the argument is fallacious because there is a disconnection between the premise and the conclusion. All invalid arguments are special cases of non sequitur. The term has special applicability in law, having a formal legal definition. Many types of known non sequitur argument forms have been classified into many different types of logical fallacies." wiki


JW: It is also the boundary condition in the Schwartschild solution of Einstein's equations.

JS: Schwarzschild, also it's another non sequitur red herring.

JW:  And in critical cosmic matter density cosmologies, spatial flatness obtains in the presence of black hole horizon strength gravity.  The problem for Jack (and other "modernists") is that if you allow that, the WMAP results give back Mach's principle as a simple prediction of general relativity.  

JS: I challenge you to give a mathematical model that WMAP proves Mach's Principle.
You do not need Mach to have k = 0 in the FRW metric.

JW: Do not expect closure on this any time soon.  :-)

    •  

    • Jack Sarfatti shared a link.
      3 minutes ago · Edited
      Begin forwarded message:

      From: "Academia.edu" <notifications@academia.edu>
      Subject: You just got 35 views on "ER=EPR discovered by Jack Sarfatti in 1974"
      Date: November 20, 2013 at 4:26:15 PM PST
      To: jacksarfatti
      Reply-To: "Academia.edu Support" <support@academia.edu>

      <academia_white_logo.jpg>
      Hi Jack,

      Congratulations! You uploaded your paper 2 days ago and it is already gaining traction.

      Total views since upload:

      <chart.png>

      You got 35 views from Argentina, the United Kingdom, the United States, Australia, the Islamic Republic of Iran, Israel, Canada, Brazil, Italy, and Spain on "ER=EPR discovered by Jack Sarfatti in 1974".

      Upload Another Paper

      Thanks,
      The Academia.edu Team


      You can disable these alerts in your Notification Settings

      Academia.edu, 251 Kearny St., Suite 520, San Francisco, CA, 94108

      <clear.gif>

      From my Starship book under construction
      Only recently, Lenny Susskind and his students working on hologram universe ideas rediscovered this “ER = EPR”[i] connection in a more mathematically rigorous manner than my precognitive remote viewing intuitions over forty years ago. Back then no one else was linking EPR with ER to my knowledge. I conjecture, semiseriously given the claims of Puthoff and Targ at SRI[ii], that since Lenny and I worked together at Cornell in 1963-4 that I was glimpsing his work of 2012 back then in 1974.

      1973: H. G. Ellis’s “drainhole,” the first plausible stargate candidate where the gravity wormhole is coupled to a massless negative energy spin zero field. That year is also a year of high strangeness, but that story is not for this book.

      1974: Hawking shows that all black holes radiate black body radiation[i] whose peak wavelength lmax is roughly the square root of the area-entropy of the black hole’s horizon, i.e., lmax ~ A1/2 where the entropy S ~ kBA/4.

      During this time I conjectured in the pop physics book “Space-Time and Beyond” that Einstein-Rosen bridges and Einstein-Rosen-Podolsky[ii] quantum entanglement[iii] were two sides of the same coin in some yet not well understood sense. This was a precognitive intuition on my part.

      Remember I wrote the quote below in 1974 almost 40 years ago. See David Kaiser's "How the Hippies Saved Physics" about me and my associates back then. We were way ahead of the pack.

      From the 1975 book Space-Time and Beyond E.P. Dutton co-authored with Fred Alan Wolf and artist Bob Toben - First edition. p. 134 "Each part of space is connected to every other part through basic units of interconnection, called wormholes. Signals move through the constantly appearing and disappearing (virtual) wormhole connections, providing instant communication between all parts of space. These signals can be likened to pulses of nerve cells of a great cosmic brain that permeates all parts of space. This is a point of view motivated by Einstein's general theory of relativity in the form of geometrodynamics. A parallel point of view is given in the quantum theory as interpreted by Bohm. In my opinion this is no accident because I suspect that general relativity and quantum theory are simply two complementary aspects of a deeper theory that will involve a kind of cosmic consciousness as the key concept. Bohm writes of “quantum interconnectedness": 

      However there has been too little emphasis on what is, in our view, the most fundamentally different new feature of all, i.e., the intimate interconnection of different systems that are not in spatial contact ... the well known experiment of Einstein, Podolsky and Rosen ... Recently interest in this question has been stimulated by the work of Bell..." D. Bohm & B. Hiley...

      End of excerpt from 1975 Space-Time and Beyond.

      The Wheeler-Fuller pinch-off would then correspond to signal locality (later called “passion at a distance”) corresponding to unitary linear orthodox quantum theory. Stargate traversable wormholes would correspond to what Antony Valentini would years later call “signal nonlocality” in a more general post-quantum theory that was both non-unitary and nonlinear in the sense later clarified independently by Steven Weinberg[iv] and Henry Stapp. [v]

      [i] http://en.wikipedia.org/wiki/Black-body_radiation



      [ii] http://en.wikipedia.org/wiki/EPR_paradox



      [iii] http://en.wikipedia.org/wiki/Quantum_entanglement



      [iv] http://www.npl.washington.edu/AV/altvw48.html

      Steven Weinberg, Physical Review Letters 62, 485 (1989);

      Joseph Polchinski, Physical Review Letters 66, 397 (1991).


      [v] http://www.fourmilab.ch/rpkp/stapp.html

      Henry Stapp Physical Review A, Vol.50, No.1, July 1994



      [i] http://arxiv.org/pdf/1308.0289v1.pdf

      http://motls.blogspot.com/2013/07/papers-on-er-epr-correspondence.html Lubos Motl 

      http://quantumfrontiers.com/2013/06/07/entanglement-wormholes/



      [ii] http://www.biomindsuperpowers.com/Pages/CIA-InitiatedRV.html
      Black-body radiation - Wikipedia, the free encyclopedia
      en.wikipedia.org
      Black-body radiation is the type of electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by a black body (an opaque and non-reflective body) held at constant, uniform temperature. The radiation has a specific spectrum and intensity that...
       
       
    •  
      Jack Sarfatti
      35 minutes ago via Twitter
      •  
        http://t.co/BsDySKcu8y Dick Bierman
        Quantum Consciousness
        lnkd.in
        Studies by Professor Benjamin Libet at University of California San Francisco in the late 1970's on awake neurosurgery patients suggested that the brain refers information "backwards in time". Simple activities like the sensation of walking (seeing and feeling your feet hit the pavement) may also in…
         
         
         
       
       
    •  
      Jack Sarfatti
      42 minutes ago via Twitter
      •  
         
        Feeling The Future: Is Precognition Possible? - Wired Sciencehttp://t.co/Bp4Tcm3AKc
         
        Feeling The Future: Is Precognition Possible? - Wired Science
        lnkd.in
        Most science papers don’t begin with a description of psi, those “anomalous processes of information or energy transfer” that have no material explanation. (Popular examples of psi include telepathy, clairvoyance and psychokinesis.) It’s even less common for a serious science …
         
         
         
       
       
    •  
      Jack Sarfatti
      43 minutes ago via Twitter
      •  
         
        Can we feel the future through psi? Don't rule it out http://t.co/iMOsHHL8cY
         
        Can we feel the future through psi? Don't rule it out | Ed Halliwell
        lnkd.in
        Ed Halliwell: A study suggesting the existence of precognition should be carefully scrutinised – not dismissed out of hand
         
         
         
       
       
    •  
      Jack Sarfatti
      53 minutes ago via The BBC website
      •  
         
        BBC Two - The Secret Life of Uri Geller
        www.bbc.co.uk
        Documentary exploring Uri Geller's covert life as a 'psychic spy'.
         
         
         

The importance of gyroscopes for the construction of real LIFs[i]

“Local inertial frames have a fundamental role in Einstein geometrodynamics. The spatial axes of a local inertial frame along the world line of a freely falling observer are mathematically defined using Fermi-Walker transport (eq. 3.4.25); that is, along … her geodesic they are defined using parallel transport. These axes are physically realized with gyroscopes. … The most advanced gyroscopes … measure the very tiny effect due to the gravimagnetic field of the Earth: the ‘dragging of inertial frames,’ that is, the precession of the gyroscopes by the Earth’s angular momentum, which in orbit, is of the order of a few tens of milliarcseconds/year. There are two main types of gyroscopes … mechanical and optical. The optical gyroscopes … are usually built with optical fibers or with ring lasers.” (6.12)

Fermi-Walker Transport, De Sitter (Geodetic)&Lense-Thirring Effects

For weak gravity fields in the first Einstein 20th Century correction to Newton’s 17th century gravity theory: Sa is a spacelike 4-vector outside its local light cone that describes the spin of the test gyroscope about its rotation axis. The test gyroscope travels along a timelike worldline xa (s) with tangent vector ua.  Saua = 0 and the equation for Fermi-Walker transport is

Sa;bub = ua (abSb) = ua(ub;gugSb)  (3.4.25)

Where a semi-colon “;” always stands for the covariant partial derivative with respect to the Levi-Civita connection that describes fictitious forces on the test gyroscope that are, in reality, real forces on the detector measuring the motion of the gyro. Repeated upper and lower indices are summed through 0,1,2,3. The local observable objectively real proper acceleration first-rank tensor directly measured by accelerometers clamped to the center of mass of the test gyro is

ab = ub;gug

If the arbitrary timelike world line of the center of mass of the test gyro (remember LIFs have three of them forming a spacelike triad base frame) is a geodesic, then, by definition, the proper acceleration tensor ab = 0. Therefore,

Sa;bub = 0 

This is the equation for Fermi-Walker transport.

“A mechanical gyroscope is … made of a wheel-like rotor, torque-free to a substantial level, whose spin determines the axis of a local, nonrotating frame. Due to very tiny general relativistic effects … that is, the ‘dragging of inertial frames’ and the geodetic precession, this spin direction may differ from a direction fixed in ‘inertial space’ that may be defined by a telescope always pointing toward the same distant galaxy assumed to be fixed with respect to some asymptotic quasi-inertial frame (see 4.8).”

Inertial Navigation From ICBMs to Starships

“Mechanical gyroscopes are based on the principle of conservation of angular momentum of an isolated system … with no external forces and torques. … the spinning rotor maintains its direction fixed in ‘space’ (apart from dragging effects as Earth rotates but, however, a vector with general orientation, fixed with respect to the laboratory walls, describes a circle on the celestial sphere in 24 hours, a spinning rotor … describes a circle with respect to the laboratory walls in 24 hours … In a moving laboratory, using three ‘inertial sensors’, that is, three gyroscopes to determine three fixed directions (apart from relativistic effects…) plus three accelerometers to measure linear accelerations and a clock (and possibly three gravity gradiometers to correct for torques due to gravity gradients, one can determine the position of the moving laboratory with respect to its initial position. This can be done by a simple integration of the accelerations measured by the three accelerometers along the three fixed directions determined by the gyroscopes [held by gimbals]. Position can thus be determined solely by measurements internal to the [starship] laboratory … a priori independently of external information is called ‘inertial navigation’ … an onboard computer integrates the accelerations … one is able to find velocity, attitude, and position of the object.” 

The word “acceleration” here means off-geodesic proper tensor acceleration not the old Newtonian kinematic acceleration measured by Doppler radar in Einstein’s somewhat misleading popular “happiest thought quote” I discussed earlier whose Siren’s song that has shipwrecked many a wannabe physicist-philosopher Flying Dutchman searching for Ithaca. However, for a starship in free float on a timelike geodesic we can dispense with the gyroscopes to preserve “direction.” “Instead one may use gradiometers …”

“The needs of air navigation have generated a powerful drive for a compact, light weight gyroscopic compass of high accuracy … Today, optical gyros have displaced the mechanical gyro … A wave-guide is bent into a circle. A beam splitter takes light from a laser and sends it round the circle in two opposite directions. Where the beams reunite, interference between them gives rise to wave crests and troughs. If the wave-guide sits on a turning platform, the wave crests reveal the rotation of the platform or the airplane that carries it.

While mechanical gyroscopes are based on the principle of conservation of angular momentum, optical gyroscopes (really optical rotation sensors) are essentially based on the principle of the constancy of the speed of light c in every inertial frame. Therefore, in a rotating circuit and relative to the {LNIF} observers moving with it, the round trip travel time of light depends on the sense of propagation of light with respect to the circuit angular velocity relative to a local inertial frame.” [LIF]

From the general connection of continuous Lie groups[ii] of symmetries of closed dynamical systems to conserved local currents and global “charges” that form the group’s non-commuting Lie algebra[iii], we conclude that the operation of the gyroscope corresponds to the three rotational symmetries of Einstein’s 1905 special relativity’s Poincare group. Therefore, the Sagnac effect[iv] basis of the optical gyros correspond to the three Lorentz boosts of that same Poincare group that formally express the constancy of the speed of light in inertial frames.  Newton’s action-reaction third law comes from the three space translation symmetry’s conservation of linear momentum and the conservation of energy comes from the time translation symmetry – if these symmetries are not broken. Does the accelerometer’s operation depend on the Rindler boosts of constant proper accelerating hyperbolic world lines of test particles? These are outside of the Poincare group requiring Roger Penrose’s twistor conformal group.[v] The Poincare group is a subgroup of the conformal group that also includes dilations.

 

Oct 16, 2013 from Jack Sarfatti’s Stargate book under construction
Returning to Wheeler:
1) Equivalence principle
2) Geometry
3) Geodesic equation of motion of point test particles (aka Newton’s 1st Law first-order partial derivatives of the metric tensor field describe fictitious inertial pseudo-forces on the test particle corresponding to real forces on the detector)
4) Intrinsic tensor curvature geodesic deviation (disclinations of vectors parallel transported around closed loops in spacetime) from second order partial derivatives of the metric tensor field describing relative covariant tensor accelerations between two neighboring geodesic test particle each with zero g-force proper acceleration
Like ·  · Share
  • Jack Sarfatti One must use the LIF to distill the intrinsic geometry of the real Einstein gravity field. The LNIF is fool’s gold, MAYA, illusion, the shadow on the wall of Plato’s Cave that has ship wrecked many a careless mariner including Isaac Newton listening to the wiles of Circe. The LNIF is contingent random noise, all sound and fury a tale told by an idiot, and believed by sorry bastards, a fairy tale, a mask. Only Einstein escaped the Cave that Newton was trapped in. Of course, Newton had a good excuse. Newton’s “gravity force” is simply the real quantum electrodynamic force sustaining the static LNIFs. It is a fictitious pseudo-force as far as the observed test particle is concerned without any intrinsic objective reality, same ontic status as Coriolis and centrifugal pseudo-forces all parts of the LNIF Levi-Civita Christoffel symbols that depend only on first order partial derivatives of the metric tensor field. Einstein’s equivalence principle (EEP) relegates them to Prospero’s phantoms, the illusions of the Wizard of Oz behind the theater curtain of the world stage.
  • Jack Sarfatti There are three levels of the equivalence principle:
    1) Weak – uniqueness/universality of free fall known to Galileo – the motion of any freely falling point test particle (or center of mass of an extended object) in vacuum is independent of its composition and structure. “A test particle is … electrically neutral … negligible gravitational binding energy compared to its rest mass … negligible angular momentum … [negligible] inhomogeneities of the gravitational field within its volume … the ratio of inertial mass to the gravitational passive mass is the same for all bodies.” In every LIF the path of a force-free geodesic test particle is a straight line with constant speed in accord with Einstein’s 1905 special theory of relativity that works increasingly well as the scale shrinks compared to the scale of curvature radii until quantum gravity is reached where the curvature field itself has large random zero point quantum fluctuations. Although this scale is thought to be 10-35 meters, the hologram conjecture combined with cosmology give a quantum gravity scale that is twenty powers of ten larger at 10-15 meters ~ (Planck length x area-entropy of our future dark energy de Sitter event horizon) 1/3.
    2) Medium strong – metric theories of gravity. Einstein went beyond the weak form to the hypothesis that all the non-gravity laws of physics obey special relativity in a LIF in the same shrinking limit as above.
    3) Very strong – replace non-gravity laws of physics with all the laws of physics.
    In this book we assume 3) the very strong form as there is no experimental evidence yet that it is false.
  • Jack Sarfatti Fermi Normal Coordinates for the LIF’s Image of Intrinsic Geometry
    “The metric tensor can indeed be written using the Riemann (curvature) tensor, in a neighborhood of a spacetime event, in a freely falling non-rotating local inertial frame to second order in the separation δxi from the origin” where i,j,k,l are spacelike (outside local light cones with origins at the spacetime event of interest) 1,2,3 indices. The Taylor series expansion to lowest non-vanishing order for the LIF is 
    g00 ~ - 1 – R0i0jδxiδxj for the gravity redshift
    g0k ~ - (2/3)R0ikj δxiδxj for the LIF drag gravimagnetic field
    gkl ~ δkl – (1/3)Rkilj δxiδxj for the curved spacelike 3-geometry
    Next, consider what the physically coincident LNIF metric looks like including the first order terms that are zero in the LIF. Here u,v,w,z = 1’,2’,3’ for LNIF like i,j,k,l = 1,2,3 for the coincident LIF.
    g’0’0’ ~ - 1 – Γu0’0’δxu – R’0’u0’vδxuδxv 
    g’0’v ~ - Γu0’vδxu - (2/3)R’0’uvw δxuδxw 
    g’uv ~ δuv - Γwuvδxw – (1/3)R’uwvz δxwδxz 
    Newton’s gravity force is purely 100% fictitious and corresponds to the first order in separation δxu from the origin of the LNIF Levi-Civita connection Γ terms, which by the equivalence principle, vanish in the physically coincident LIF.
    Kornel Lanzcos in “On the Problem of Rotation in the General Theory of Relativity” proved that in any LNIF for test particle rest mass m:
    1) mg0’0’-1Γu0’0’ independent of the test particle’s velocity corresponds both to Newton’s gravity fictitious force – GMmr/r3 in the particular contingent choice of the static LNIF and to the centrifugal force mwxwxr in the particular contingent choice of a uniformly rotating LNIF with angular momentum pseudo-vector w along the rotation axis. That we are in the slow speed weak curvature limit is understood.
    2) 2mg0’0’-1Γu0’v’dxv/dτ linear in the velocity of the test particle is the Coriolis fictitious force 2mwxv analogous to the magnetic Lorentz force in Maxwell’s electrodynamics and to the vortex force in irrotational hydrodynamics. The Greek symbol τ refers to proper clock time along the world line of the test particle.
    3) Finally, mg0’0’-1Γuvw (dxv/dτ) (dxw/dτ) quadratic in the velocity of the test particle is also a fictitious force that has no name and is usually too small to measure. 
    All of these fictitious forces blow up at horizons where the LNIF g0’0’ vanishes.
    The relative covariant tensor acceleration between two freely-falling geodesic test particles each with zero local proper tensor acceleration, is
    d2δxα/dt2 ~ Rα0μ0δxμ equation of geodesic deviation
  • Jack Sarfatti On Oct 15, 2013, at 1:31 PM, JACK SARFATTI wrote:

    Wheeler on the relation of gravity to the electro-weak-strong interactions – local gauge and string theories:


    “What of the other forces of nature? Every other force – the electric force that rules the motion of the atomic electrons, the weak nuclear force that governs the emission of electrons and neutrinos from radioactive nuclei, and the strong nuclear force that holds together the constituents of particles heavier than the electron – demands … a geometry of more than four dimensions, perhaps as many as ten. The extra six dimensions are envisaged as curled up into an ultra-small cavity, with one such cavity at each point in spacetime. … The theories of the unification of forces with greatest promise today all have this striking feature that they, like the battle-tested, but simpler and older Einstein gravitation theory, build themselves on the [vanishing] boundary of a boundary principle, though in a higher dimensional version … Elie Cartan’s penetrating insight … from the grip of spacetime on mass to the grip of mass on spacetime, and from the automatic conservation of momentum-energy … the unfolding of all this from ‘the one-dimensional boundary of the two-dimensional boundary of a three-dimensional region is zero’ and the ‘two-dimensional boundary of the three-dimensional boundary of a four-dimensional region is zero.’” Pp. 9,10

    All four interactions are boson local gauge theories of different groups of local frame transformations also called “gauge transformations” needing the mathematics of fiber bundles. Maxwell’s electromagnetism mediated by spin 1 massless spin 1 vector photons corresponds to the internal U(1) group that can be pictured as a circle “fiber” at each point on the “base” spacetime. Think of the circle as a one handed Salvador Dali clock. The clock hand can be moved locally at each spacetime point independently of all the other clocks at other spacetime points only because there is an induced connection field, analogous to the Levi-Civita connection (more precisely its more fundamental spin connection from which it derives) connecting the different fibers. Moving each local clock hand arbitrarily induces a gauge transformation in the connection field. The connection field supplies a covariant derivative and parallel transport of objects through the fiber space corresponding to world lines in the projected base space-time beneath it. The disclination curvature in closed loops in the fiber space corresponds to the electromagnetic field tensor. Similarly for the SU(2) group of the weak interaction which has three “flavor” quanta called the spin 1 vector W-bosons with electric charges +1, 0, -1 of the electron’s charge. Now we have a three-dimensional hyper-sphere bounding a four-dimensional internal fiber space not to be confused with spacetime. These W-bosons have rest masses from the Higgs spin 0 boson because of a kind of superconductivity that forms in the moment of inflation from a false vacuum at the Alpha Point creation of our observable universe (aka “causal diamond”) bounded in the past by an observer-dependent particle horizon and in the future by an observer-dependent de Sitter dark energy event horizon. Both of these cosmological horizons have quantum thermodynamic hologram computational capacity and they emit Hawking radiation. Our past history pre-selected particle horizon emits retarded Hawking radiation to us here-now along our past light cone. Our future destiny post-selected de Sitter event horizon sends us back-from-the-future advanced Wheeler-Feynman Hawking radiation that happens to have the same energy density as the anti-gravity dark energy accelerating the rate of expansion of three-dimensional inter-galactic space. This is not a meaningless random Darwinian coincidence. There is the w-problem that dark energy needs w < -1/3 whilst retarded Hawking radiation has w = +1/3. However, we also have the Unruh effect here that the w = +1/3 Hawking blackbody radiation seen in LNIFs whose temperature is proportional to its local proper accelerometer reading, looks like w = -1 zero point radiation in coincident LIFs both connected to each other by tetrad transformations via the Einstein Equivalence Principle (EEP).

    Returning to the strong interaction, the internal group is SU(3) with eight massless spin 1 vector gluon quanta corresponding to an eight-dimensional hyper-sphere fiber bounding a nine-dimensional internal fiber space at each point in spacetime. The spin 0 Higgs boson does not directly interact with the eight “color” gluons that bind the spin ½ quarks into hadrons. The photon does not directly interact with itself, unlike the three weak massive W-bosons and the eight strong massless gluons which do interact with themselves respectively as well as with each other. Each boson charge of the internal groups is a hermitian generator of the Lie algebra of the unitary Lie group. SU2 and SU3 Lie algebras have non-vanishing commutators of these internal charges. This implies Heisenberg uncertainty relations for simultaneous quantum measurements of the internal weak flavor and strong color charges. It is this incompatibility of the charges that causes the self-interactions.

    We have a similar situation with gravity as a local gauge fiber bundle. We now have four mutually commuting tetrad charges that form the momentum-energy Hermitian observables in the LIF tangent space-fiber over spacetime base space. However, in addition we have the six spin-connection charges consisting of three space-rotation angular momenta and three Lorentz boosts. All ten of these charges form the non-commuting Lie algebra of the Poincare group, which unlike the electro-weak-strong unitary groups is not compact. However, the failure of the ten charges of the Poincare group to mutually commute completely causes the non-linear self-interaction of the massless spin 2 tensor gravitons of classical GR. The classical near fields of all of these four basic interactions consist of “super conducting” macro-quantum coherent Glauber states of off-shell virtual bosons with all possible polarizations. This is in contrast to the far-field radiations consisting of Glauber coherent states of massless photons or massless gravitons with only two transverse polarization states. One point of interest is that the gravity quanta are spin 1 vector bosons at Dirac square root LIF tetrad/spin connection level of the formalism. Einstein’s 1916 GR is a constrained limiting case of the local gauge theory just described in which zero dynamical dislocation torsion is imposed ad hoc giving only dynamical geodesic deviation disclination curvature. In this limiting case, the six spin-connection components are no longer an independent dynamical field, but are determined from the LIF tetrads (consisting of a spacelike triad and a timelike tangent vector). One can also use the complex Penrose light cone null tetrads. These spin 1 vector boson tetrad fields then entangle in pairs to get spin 0, spin 1 and spin 2 “gravitons.” However, the spin 0 and spin 1 must get rest masses via the Higgs bosons because we do not directly detect them at macroscopic distances.
  • Jack Sarfatti Wheeler’s Version of Einstein’s Geometrodynamics
    Rocklike (IT) spacetime, in addition to David Bohm’s thoughtlike (BIT) quantum potential Q that operates from beyond spacetime, tells mass how to move on free-float weightless timelike geodesics where accelerometers measure zero local proper tensor acceleration. That is the action. The reaction is mass telling spacetime how to curve. If Einstein’s 1916 geometrodynamics is merely a limiting case of Cartan’s extension to it, then quantum spin and possibly orbital angular momentum of mass tell spacetime how to torsion causing dislocation cracks in the quantum gravity world crystal lattice of Hagen Kleinert, which must have a Fermi lattice spacing of 10-15 meters not Planck spacing of 10-35 meters if the ‘t Hooft-Susskind causal diamond observable universe is a hologram simulation is correct. This suggests a Yukawa strong finite-range micro gravity picture of nuclear forces with spin 0, spin1 and spin 2 components at the 1 Gev scale. Abdus Salam had such a spin 2 f-gravity idea in the early 1970’s, which, as I pointed out to him corresponded to the universal slope of Regge trajectories of hadronic string theory resonances that could be pictured as Kerr-type quantum black holes. Their Hawking radiation evaporation time would correspond to their instability. As of 2013 there is a newer model connecting two SU(3) theories to quantum gravity.

    Returning to Wheeler:
    1) Equivalence principle
    2) Geometry
    3) Geodesic equation of motion of point test particles (aka Newton’s 1st Law first-order partial derivatives of the metric tensor field describe fictitious inertial pseudo-forces on the test particle corresponding to real forces on the detector)
    4) Intrinsic tensor curvature geodesic deviation (disclinations of vectors parallel transported around closed loops in spacetime) from second order partial derivatives of the metric tensor field describing relative covariant tensor accelerations between two neighboring geodesic test particle each with zero g-force proper acceleration.

    One must use the LIF to distill the intrinsic geometry of the real Einstein gravity field. The LNIF is fool’s gold, MAYA, illusion, the shadow on the wall of Plato’s Cave that has ship wrecked many a careless mariner including Isaac Newton listening to the wiles of Circe. The LNIF is contingent random noise, all sound and fury a tale told by an idiot, and believed by sorry bastards, a fairy tale, a mask. Only Einstein escaped the Cave that Newton was trapped in. Of course, Newton had a good excuse. Newton’s “gravity force” is simply the real quantum electrodynamic force sustaining the static LNIFs. It is a fictitious pseudo-force as far as the observed test particle is concerned without any intrinsic objective reality, same ontic status as Coriolis and centrifugal pseudo-forces all parts of the LNIF Levi-Civita Christoffel symbols that depend only on first order partial derivatives of the metric tensor field. Einstein’s equivalence principle (EEP) relegates them to Prospero’s phantoms, the illusions of the Wizard of Oz behind the theater curtain of the world stage.
  • Jack Sarfatti Fermi Normal Coordinates for the LIF’s Image of Intrinsic Geometry
    “The metric tensor can indeed be written using the Riemann (curvature) tensor, in a neighborhood of a spacetime event, in a freely falling non-rotating local inertial frame to second order in the separation δxi where i,j,k,l are spacelike (outside local light cones with origins at the spacetime event of interest) 1,2,3 indices. The Taylor series expansion to lowest non-vanishing order is 
    g00 ~ - 1 – R0i0jδxiδxj for the gravity redshift
    g0k ~ - (2/3)R0ikj δxiδxj for the LIF drag gravimagnetic field
    gkl ~ δkl – (1/3)Rkilj δxiδxj for the curved spacelike 3-geometry
    The relative covariant tensor acceleration between two freely-falling geodesic test particles each with zero local proper tensor acceleration, is
    d2δxα/dt2 ~ R^α0μ0δxμ is the equation of geodesic deviation


Sent from my iPad

On Oct 8, 2013, at 2:36 PM, jack <jacksarfatti@gmail.com> wrote:

"Einstein continues by pointing out how things fare better in GR:

By the way, physical space possesses reality according to the general theory of relativity, too, but not an independent one; for its properties are completely determined by matter. Space is incorporated into the causal nexus without playing a one-sided role in the causal chain.

The second half of the first sentence is also striking, as Einstein had previously recognised that Mach’s principle only holds for certain solutions of the Einstein field equations, not for all of them — but of course, at the time he considered those solutions for which it held as the only physically relevant ones. At any rate, we here see the complete position which would first be presented in the 1921 Princeton lectures: in Newtonian mechanics space acts without being acted upon, while in general relativity it interacts."

For twenty years I have made the same point for quantum theory.

Signal nonlocality happens when the matter beables and their quantum information mental pilot waves obey the very same AR action reaction principle. This opens Pandora's Box.

See Lecture 8 of http://www.tcm.phy.cam.ac.uk/~mdt26/pilot_waves.html

Entangled Glauber coherent states seem to violate no signal arguments in quantum theory.

"As we mentioned in section 3.3 above, Norton argued in 1999 that AR was in the back of Einstein’s mind well before 1920, and indeed formed the stimulus of his original Machian tendencies. Here is a further quote from Norton’s study:

This view of the deficiency of earlier theories [their violating the action–reaction principle] and general relativity’s achievement is not one that grew in the wake of Einstein’s disenchantment with Mach’s principle. Rather, it was present even in his earliest writings beneath the concerns for the relative motion of bodies and the observability of causes.78 

 

Next year the eclipse is supposed to show whether light rays are bent by the sun, whether, in other words, the fundamental assumption of the equivalence between ac- celeration of the frame of reference on the one hand and the gravitational field on the

79Einstein [1913], p.1260-1261.

80It is true that Einstein rejected his own 1912 scalar field theory (mentioned footnote 32 above) when he discovered that it failed to satisfy Newton’s third law of motion concerning action–reaction. But this is a case of the existence of both action and reaction, which happen not to be equal and opposite, thus giving rise to an unacceptable force-free accelerative phenomenon. As we stressed in section 2, AR is not be to be conflated with Newton’s third law, which is a much stronger constraint on the way bodies act on each other. 

 

 

Einstein is explicit in regard to the claim that gravitation is an interaction, with the clarification that the interaction is said to be mediated by gμν. The outcome, incidentally, is a revised description of the 1916 thought experiment of the two rotating spheres:

'Mr. Reichenb ̈acher misunderstood my considerations regarding two celestial bodies rotating with respect to one another. One of these bodies is rotating in the sense of Newtonian Mechanics, and thus flattened by centrifugal effects, the other is not. This is what the inhabitants would measure with rigid rods, tell each other about it, and then ask themselves about the real cause of the different behaviour of the celestial bodies. (This has nothing to do with Lorentz contraction.) Newton answered this question by declaring absolute space real, with respect to which one but not the other allegedly rotates. I myself am of the Machian opinion, which in the language of relativity theory can be put in the following way: All masses of the world together determine the gμν- field, which is, judged from the first celestial body, a different one than judged from the second one; for the motion of the masses producing the gμν-field differ significantly. Inertia is, in my opinion, a (mediated) interaction between the masses of the world in the same sense as those effects which in Newtonian theory are considered as gravitational effects.'

 

To summarise, it seems fair to say that Einstein did not need a variant of the action–reaction principle as a reason to adopt the relativity of inertia in 1913. His strong belief in the equivalence between gravity and inertia, together with his retention of the Newtonian tenet that gravity is an interaction between bodies, could be seen as reason enough.85 Furthermore, it is the pairing of the equivalence principle and the principle of the relativity of inertia, together with the principle of relativity, that Einstein mentions repeatedly up until 1920 as the cornerstones of GR, whereas AR only really takes centre stage in 1920 in the correspondence with Schlick and in subsequent publications. For these reasons, we are inclined to believe that the 1920 correspondence brought out a watershed in Einstein’s thinking, marking an unprecedented shift in Einstein’s interpretation of the superiority of GR over preceding theories of space-time: its superiority now rested on satisfaction of the action–reaction principle, rather than implementation of Mach’s original analysis of inertia.

 

Einstein’s frequent references to GR’s vindication of the action–reaction principle in the years following his 1921 Princeton lectures have been noted in a number of studies.86 A particularly telling quotation is from a letter Einstein wrote a year before his death to Georg Jaffe:

'You consider the transition to special relativity as the most essential thought of relativity, not the transition to general relativity. I consider the reverse to be correct. I see the most essential thing in the overcoming of the inertial system, a thing which acts upon all processes, but undergoes no reaction. The concept is in principle no better than that of the centre of the universe in Aristotelian physics.87'

For Einstein, the glory of GR rested partly on its alleged superiority to preceding theories of space-time which involve absolute structure. His 1924 essay “On the ether” contains a particularly clear denunciation of Newtonian mechanics in terms of its violation of AR.88 But caution should be exercised when extrapolating backwards, as it were, in the history of physics. It doesn’t automatically follow from the fact that GR satisfies AR, that NM and SR don’t, as we mentioned in section 1 above. To repeat, Einstein was content in his 1905 development of SR to explicitly borrow the inertial frames from NM, without any fretting about the correct metaphysics of action. Of course, if AR is to be respected in these theories, inertia must be taken as a brute fact, a position advocated, in different ways, by Schlick and others, as we have seen. Such a position is surely defensible in the context of these theories. 

The two epigrammatic Einstein quotations cited at the beginning of this essay underscore how Einstein’s thinking changed between 1905 and 1913, and again between 1913 and 1924. In the years 1912 and 1913, when Mach’s influence on him may have been greatest, Einstein had convinced himself that the phenomenon of inertia required a causal explanation, while regarding as absurd the notion of immaterial space acting as such a cause. By 1924, he was stressing that the metric field in GR is as real and efficacious as the electromagnetic field, and in particular could indeed be seen as the origin of inertia. (But it is worth stressing here that Einstein did not view GR as furnishing a geometric explanation of gravitational phenomena; he continued to reject the notion of space, or space-time, as providing the cause of inertia.89)

 

Nowadays, acceptance of Einstein’s 1924 claim should be seen to rest not simply on the nature of gμν and its geodesics, but rather on the so-called geodesic theorem, which demonstrates that the form of Einstein’s field equations, along, it must be noted, with other plausible universal assumptions about matter fields, imply that the world-lines of test particles are time-like geodesics as defined by the metric field.90 Note that the theorem deals with an idealisation; it states that extended, but truly freely-falling bodies only approximately move inertially.91 In fact, it is a subject worthy of investigation as to whether the details of the theorem are strictly consistent with Einstein’s insistence that a violation of AR holds in theories with absolute space-time structure.92 But such an investigation must be pursued elsewhere. It is our hope that in the present essay, some further light has been shed on the circumstances which led Einstein to bring to the fore the role of the action–reaction principle in his new theory of gravity. 

83Einstein [1920a].

84Einstein [1921] p. 12 see also Vol.7, Doc. 31 CPAE for a similar statement from December 1919 / January 1920. 85Compare Norton [1989b], p. 24: “[I]t was natural for expect that the extended theory, which dealt with general gravitational effects, would explain the observed disposition of inertial frames of reference in terms of the matter distribution of the universe. For the structure that determined this disposition would behave in many aspects like a traditional gravitational field and therefore be strongly influenced by any motion of its sources, the masses of the universe.” 

Sent from my iPad

On Oct 8, 2013, at 1:54 PM, Jack <jacksarfatti@gmail.com> wrote:



Sent from my iPhone

On Oct 8, 2013, at 1:45 PM, Max Comess <mcomess@gmail.com> wrote:
 
 
[Add more about details relating to stargates (e.g. metrics, exotic matter requirements, etc), why is this approach different from previous wormhole literature? Also, is there a particular experimental approach you suggest pursuing, or any experimental work that has already been done to validate your hypothesis?]

Obviously i will

 

On Sep 18, 2013, at 6:12 PM, JACK SARFATTI <jacksarfatti@icloud.com> wrote:

 

"Gravitational field is the manifestation of space-time translational (T4) gauge symmetry, which enables gravitational interaction to be unified with the strong and the electroweak interactions. Such a total-unified model is based on a generalized Yang-Mills framework in flat space-time."
 
I have said this for many years now.
 
On Sep 18, 2013, at 6:00 PM, art wagner <wagnerart@hotmail.com> wrote:

 

http://www.youtube.com/watch?v=hbmf0bB38h0

image

Note that the total energy of the gravity field has this Q problem suggesting gravity as a "More is different" (P.W. Anderson) low-energy emergent field from a spontaneous broken vacuum symmetry at the Alpha Moment of Inflation (zero conformal time & zero comoving distance in Tamara Davis’s Fig 1.1 c) from false to true vacuum in the above picture. 

On the other hand gravity is also induced by localizing the universal global gauge (De Sitter - Poincare group) - so how do we merge these two ideas from different levels?

One model is G = O(9) spontaneously breaks to H = O(8) giving 8 Goldstone post-inflation condensates whose quantized vibrations are the massless SU3 QCD gluons via an analytic continuation of non-compact O(9)/O(8) to compact SU3?

This model has 28 Higgs-like massive bosons - not to be confused with the single electro-weak Higgs allegedly now found at LHC from G = U1xSU2 ---> H = U1 where the three massless W bosons of SU2 essentially absorb the three massless Goldstone bosons leaving only the single massive Higgs boson in this simplest of models.

28 + 8 = 36 = 9x8/2 = number of spacetime charges in string theory type O(9) spacelike sub-group of string theory O(1,9) with 6 extra space dimensions.O(9) is for the spacelike slices of O(1,9) used in superstring theory