Text Size

Stardrive

Tag » Nick Herbert

 Jack Sarfatti said...

Yes I still have my copy of Quantum Theory and Beyond. I was at the 1974 Cambridge ANPA meeting hosted by Ted Bastin where I first met Brian Josephson and Bernard Car as well as Dennis Bardens of BBC and allegedly British Secret Service.

 
On Sep 18, 2013, at 6:44 PM, nick herbert <quanta@cruzio.com> wrote:
 
On Sep 18, 2013, at 11:12 AM, Dean Radin <dradin@noetic.org> wrote:

This article on that same website is also very good. Apparently no one dares propose the possibility that nature as we observe it is literally shaped by our expectations:

https://www.simonsfoundation.org/quanta/20130524-is-nature-unnatural/

I interpret the results of psi research as pointing toward the same possibility.


best wishes,
Dean

-----------------------------------------------------------------------
Chief Scientist, Institute of Noetic Sciences
Co-Editor-in-Chief, Explore: The Journal of Science and Healing
Author, Supernormal and other books
Personal website 


On Wed, Sep 18, 2013 at 8:08 AM, nick herbert <quanta@cruzio.com> wrote:
Thanks, Gaby.
This is not only a marvelous discovery
that I had never heard of
(I live in the woods after all)
but a beautifully written article
describing the discovery
and iys possible implications.

Nick

On Sep 18, 2013, at 2:48 AM, Jungle Girl wrote:

https://www.simonsfoundation.org/quanta/20130917-a-jewel-at-the-heart-of-quantum-physics/
Complications in Physics Lend Support to Multiverse Hypothesis | Simons Foundation
www.simonsfoundation.org
Decades of confounding experiments have physicists considering a startling possibility: The universe might not make sense.
  • Jack Sarfatti Jim should have done more elementary calculations of simple cases in his book. I will not make the same pedagogical mistake in my book.

    Jim's Sciama vector theory of gravity which I soundly reject as beyond the fringe of plausibility as well as Einste
    in's tried and true battle tested tensor theory of gravity which I accept as The Word made Flesh from GOD(D) herself are BOTH classical field theories. Feynman diagrams
    Feynman diagram - Wikipedia, the free encyclopedia
    en.wikipedia.org/wiki/Feynman_diagram
    In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions governing the behavior of subatomic particles.
    Motivation and history - Representation of physical reality
    are for quantum field theory and beyond, e.g. supergravity STING theory. 

    Of course, if one used classical field perturbation theory some remnant of Feynman's technique should survive. The effects of off-mass-shell virtual particles will be ignorable i.e. internal lines smeared over into a glob. However, the idea of using the amplitudehedron to compute solutions of nonlinear classical field theory might not be completely stupid? Jim's vector theory of gravity is relatively Mickey Mouse and does not need all of this fancy Dan math.

    MY VERSION of Jim's theory is very simple and does not need all his numbo jumbo about fictitious forces etc.

    One simply postulates in a Popper falsifiable manner:

    observed inertia = (Nonlocal Mach screening factor)(Local inertia)

    Local rest mass comes from several sources at different levels

    1) Higgs vacuum field for leptons, quarks, W bosons

    2) quantum chromodynamics for hadrons (confined ZPE of the quarks)

    3) standard low energy nuclear, atomic, solid state, chemical bond binding energy physics

    Finally we have the split

    (Nonlocal Mach screening factor) = Aharonov Destiny + Aharonov History

    The BACK FROM THE FUTURE DESTINY piece is the Wheeler-Feynman Hoyle-Narlikar-Cramer ADVANCED FUTURE LIGHT CONE INFLUENCE FUNCTIONAL constrained by our future dark energy TOTAL ABSORBER de Sitter event horizon (a hologram quantum computer).

    Similarly, for the RETARDED past light cone part constrained by our past particle horizon.

    OK now use plain vanilla Einstein GR

    Newton's 2nd law of TEST PARTICLE mechanics is

    DP/ds = F

    P = (Nonlocal Mach factor)(Local Inertia)V = (Phi)mV

    V = tensor 4 velocity of test particle

    D/ds = d/ds + (Levi-Civita DETECTOR terms)

    ds = proper time of test particle differential along its CLASSICAL world line

    (Levi-Civita DETECTOR terms) ~ 0 when the detector is on a timelike geodesic and is not rotating.

    d(Phi mV)/ds = (dPhi/ds)mV + Phi(dm/ds)V + (Phim)dV/ds

    This is only for timelike test particles NOT for PHOTONS!

    The ROCKET PROPELLENTLESS PROPULSION term is

    (dPhi/ds)mV

    In addition there need be some classical field (from action) equations for Phi, but this Phi does not at all correspond to

    g00 = 1 - phi/c^2

    BTW on Jim's speed of light RED HERRING!

    classically ds = 0 and that's all one can really say correctly.

    In the general metric corresponding to an arbitrary timelike LNIF set of detectors

    ds^2 = g00c^2dt^2 + g0icdtdx^i + gijdx^idx^j

    for a classical optics light ray this is

    0 = g00c^2dt^2 + g0icdtdx^i + gijdx^idx^j

    i,j = 1,2,3

    If we define the PROPER LENGTH dL as

    dL^2 = gijdx^idx^j

    and PROPER TIME dT as

    dT^2 = g00dt^2

    then the light ray equation is

    0 = - c^2dT^2 + g0icdtdx^i + dL^2

    = - c^2dT^2 + g0ig00^-1/2cdTdx^i + dL^2

    You can always choose a local triad where gij = 0 if i =/= j and not change the dynamical physics

    define like Ray Chiao Ai = g0i

    Therefore, the light ray null geodesic equation is

    0 = - c^2dT^2 + g00^-1/2cdTA.dL + dL^2

    DEFINE c' = dL/dT

    Therefore, JIM IS WRONG! 

    0 = - c^2 + g00^-1/2A.c' + c'^2

    A.c' = cAcos(A,c')

    This is a SIMPLE quadratic equation for the speed of light that has two roots in general when A =/= 0.

    Also note the HORIZON SINGULARITY at g00 = 0

    c' = {-cAcos(A,c')g00^-1/2 +- [c^2A^2cos^2(A,c')/g00 + 4c^2]^1/2}/2

    = {c{Acos(A,c')/g00^1/2 +,- c[A^2cos^2/g00 + 4]^1/2}/2

    In the limit A -> 0 c' -> +,- c

    When A =/= 0 at a horizon we get two roots for c', i.e. 0 and infinity!
Kalamides entanglement signal design refuted decisively
  • Steve Schultz Well, that's no fun. Guess that means I won't be need to register the radio station letters KFTL...
  • Jack Sarfatti On Jun 12, 2013, at 8:50 AM, Suda Martin wrote:

    Dear all,

    Yes, if one calculates precisely the Kalamidas - expression given in the attachment of the email of CG one obtains exactly
    ...See More
  • Jack Sarfatti Von: CHRISTOPHER GERRY
    Gesendet: Mittwoch, 12. Juni 2013 16:18
    An: nick herbert; Demetrios Kalamidas
    Cc: John Howell; Suda Martin; ghirardi Giancarlo; Ruth Elinor Kastner; JACK SARFATTI
    Betreff: Re: More on the |0>|0> term


    I probably shouldn't jump in on this again, but...

    I can assure you that there's no thorn in the side of the quantum optics community concerning the scheme of Kalamidas. There are only people doing bad calculations. Despite claims to the contrary, our paper, as with Ghirardi's, does specifically deal with the Kalamidas proposal. It is quite clearly the case that EXACT calculations in the Kalamidas proposal shows that the claimed effect disappears. To suggest that it's there in the approximate result obtained by series expansion, and therefore must be a real effect, is simply preposterous. All it means is that the approximation is wrong; in this case being due to the dropping important terms.

    The whole business about the |00> and whatever (the beam splitter transformations and all that) is not the issue. I'm astonished at how the debate on this continues. The real problem, and I cannot emphasize it enough, is this: Kalamidas cannot do quantum optical calculations, even simple ones and therefore nothing he does should be taken seriously. As I've said before, his calculation of our Eq. (9), which I have attached here, is embarrassingly wrong. It's obvious from the expression of the expectation value in the upper left that there has to be two terms in the result both containing the product of r and t. But Kalamidas throws away one of the terms which is of the same order of magnitude as the one he retains. Or maybe he thinks that term is zero via the quantum mechanical calculation of its expectation value, which it most certainly is not. His limits have been taken inconsistently. So, he not only does not know how to do the quantum mechanical calculations, he doesn't even know how or when the limits should be taken. There's absolutely no point in debating the meaning of the results incorrect calculations. Of course, by incorrectly doing these things he gets the result he wants, and then thinks it's the duty of those of us who can do these calculations to spend time showing him why his calculations are wrong, which he then dismisses anyway. My point in again bringing this specific calculation of his is not to say anything about his proposal per se, but to demonstrate the abject incompetence of Kalamidas in trying to do even the most elementary calculations. And if anyone still wonders why I'm angry about the whole affair, well, what should I feel if some guy unable to do simple calculations tries to tell established quantum optics researchers, like me and Mark Hillery, that our paper showing where he's wrong dismisses ours as being "irrelevant?" He doesn't even seem to know that what he said was an insult.

    And finally, the continued claim that the specific proposal of Kalamidas has not been addressed must simply stop. It has been repeatedly. I suspect this claim is being made because people don't like the results of the correct calculations. That's not the problem of those of us can carry through quantum optical calculations.

    CG
  • Keith Kenemer disappointing, but not unexpected...
  • Jack Sarfatti Yes, but here is latest from Nick Herbert - Custer's Last Stand
    On Jun 12, 2013, at 12:28 PM, nick herbert <quanta@cruzio.com> wrote:

    All--

    Excuse me for being confused.
    Gerry refutes Kalamidas by showing that an omitted term is large.
    Suda refutes Kalamidas by showing that the same term is identically zero.
    What am I missing here?

    I wish to say that I accept the general proofs. Kalamidas's scheme will not work as claimed.
    That is the bottom line. So if the general proofs say FTL will fail for full calculation, then it will certainly fail for approximations.

    The "weak coherent state" is a common approximation made in quantum optics. And dozens of experiments have been correctly described using this approximation. So it should be a simple matter to show if one uses
    Kalamidas's approximation, that FTL terms vanish to the appropriate level of approximation. If this did not happen we would not be able to trust the results of approximation schemes not involving FTL claims.

    Gerry's criticism is that Kalamidas's scheme is simply WRONG--that he has thrown away terms DK regards as small. But in fact they are large. Therefore the scheme is flawed from the outset.

    If Gerry is correct, then it seems appropriate to ask: Is there a CORRECT WAY of formulating the Kalamidas scheme using the "weak coherent state" approximation, where it can be explicitly shown that this correct scheme utterly fails?

    It seems to me that there are still some loose ends in this Kalamidas affair, if not a thorn in the side, at least an unscratched itch.

    It seems to me that closure might be obtained. And the Kalamidas affair properly put to rest if everyone can agree that
    1. DK has improperly treated his approximations; 2. Using the CORRECT APPROXIMATION SCHEME, the scheme abjectly fails just as the exact calculation says it must.

    Why should it be so difficult to construct a correct description of the Kalamidas proposal, with CORRECT APPROXIMATIONS, and show that it fails to work as claimed?

    AS seen from the Ghirardi review, there are really not that many serious FTL proposals in existence. And each one teaches us something-- mostly about some simple mistakes one should not make when thinking about quantum systems. Since these proposals are so few, it is really not a waste of time to consider them in great detail, so we can learn to avoid the mistakes that sloppy thinking about QM brings about.

    When Ghirardi considers the Kalamidas scheme in his review, I would consider it less than adequate if he did not include the following information:

    1. Kalamidas's scheme is WRONG because he treats approximations incorrectly.
    2. When we treat the approximations correctly, the scheme fails, just as the general proofs say it must.

    Gerry has provided the first part of this information. What is seriously lacking here is some smart person providing the second part.

    Nick Herbert
  • Jack Sarfatti On Jun 12, 2013, at 2:07 PM, JACK SARFATTI <adastra1@me.com> wrote:

    Lest anyone be confused. I am not defending Kalamidas's gedankenexperiment. Neither is Nick Herbert.
    I agree, that in contrast to Antony Valentini's strategy, any proposal for stand-alone entanglement signaling that does not violate an axiom of orthodox quantum theory will fail. Furthermore, one must show why such a violation is found in Nature. It's not clear whether John Cramer's experiment is supposed to violate quantum theory or not?
    Going for a blast into the real past - seattlepi.com

    www.seattlepi.com/.../Going-for-a-blast-into-the-real-past-1219...
    by Tom Paulson - in 171 Google+ circles
    Nov 14, 2006 – Going for a blast into the real past ... The reflection of UW physicist John Cramer can be seen as he prepares an experiment with lasers. Cramer ...
    Going for a blast into the real past - Worldnews.com
    article.wn.com/view/2013/05/20/Going_for_a_blast_into_the_real_past/
    May 20, 2013 – ... splitting photons actually works, says University of Washington physicist John Cramer, the next step will ... >Going for a blast into the real past ...
    Going for a blast into the real past (quantum retrocausality ...
    www.democraticunderground.com › Discuss
    Nov 15, 2006 - 11 posts - 10 authors
    Going for a blast into the real past. If his experiment with splitting photons actually works, says University of Washington physicist John Cramer, ...
    An Experimental Test of Signaling using Quantum Nonlocality
    faculty.washington.edu/jcramer/NLS/NL_signal.htm
    John G. Cramer. Reports: UW CENPA ... "Going for a blast into the real past", Tom Paulson, Seattle Post-Intelligencer, November 15, 2006 · "Science hopes to ...
    John Cramer's Retrocausality Experiment
    sci.physics.narkive.com › sci physics
    Nov 17, 2006 – "Going for a blast into the real past. If the experiment works, ...University of Washington physicist John Cramer, the next step will be to test for ...
    Retrocausality - Wikipedia, the free encyclopedia
    en.wikipedia.org/wiki/Retrocausality
    Furthermore, the ability to affect the past suggests that causes could be negated by their own ... The Wheeler–Feynman absorber theory, proposed by John Archibald Wheeler and .... "Going for a blast in the real past". ... "Five Decades of Physics" http://www.physics.ohio-state.edu/~lisa/CramerSympo
    Begin forwarded message:

    From: ghirardi
    Date: June 12, 2013 1:33:38 PM PDT
    To: CHRISTOPHER GERRY

    To reinforce the appropriate remarks by Christopher, I want to stress that suggesting that my, as well as Gerry's contributions do not deal with Kalamidas' proposal is an unacceptable position to take. Both of us have PROVED that precisely Kalamidas' proposal does not work and is affected by basic errors that either derive from a mistaken use of general quantum rules or from resorting to unjustified and wrong approximations. That's the story.

    GianCarlo Ghirardi

    P.S. I believe that the debate which is going on, if it becomes known to a larger community of physicists, is seriously damaging the investigations on foundational issues since it puts into clear evidence that part of the people involved is not even capable of using correctly the basic principles of quantum mechanics.

    GianCarlo Ghirardi
    Emeritus
    University of Trieste
    Italy
  • Jack Sarfatti For the record I agree with Chris Gerry below: "On Jun 12, 2013, at 2:03 PM, CHRISTOPHER GERRY <christopher.gerry@lehman.cuny.edu> wrote:

    We are both right: the two terms cancel each other out! That the whole expectation value is zero is actually exactly what's in our paper's Eq. 9. This happens because the reciprocity relations must hold. That Kalamidas thought (or maybe even still thinks) his calculation is correct, is at the heart of the matter, that is, that he is either unable to do the calculations or that he can do them but chooses not too because they don't get him where he wants to go.

    The Kalamidas scheme will not work not work on the basis of general principles as we showed in the first part of our paper (see also Ghirardi's paper).

    And again, the notion that an alleged approximate calculation (I say "alleged" because as with everything else there are correct and incorrect approximate calculations) based on a weak signal coherent state somehow trumps an exact computation valid for any value of the coherent state parameter, is, well, just insane. If you want to see where things go wrong just take more terms in the series expansions. Add up enough terms and, viola, no effect! One can't get much more specific than that.

    Christopher C. Gerry
    Professor of Physics
    Lehman College
    The City University of New York
    718-960-8444
    christopher.gerry@lehman.cuny.edu"
  1.  
  2. NICK'S REVIEW OF THE KALAMIDAS AFFAIR (JUNE 5, 2013)
    "Recently CCNY physics graduate Demetrios Kalamidas proposed a clever
    faster-than-light signaling scheme [DK1] which survived peer review and
    was recently published in Journal of the Optical Society of America. Kalamidas's FTL scheme has generated much discussion and controversy which I will attempt to summarize in this brief review."
    5Like · · Share
    • Jack Sarfatti Nick Herbert continues: "I wish to emphasize that I am not a member of the quantum-optics community nor am I proficient in boson algebra. I am however familiar with devising and refuting FTL communication schemes [1]. I would appreciate comments, corrections and additions to this review.
      Kalamidas's scheme is based on a path-uncertain pair of photons shared by
      Alice and Bob. Whenever Bob's photon path is certain, then so is Alice's, and
      no path interference can occur at Alice's detectors. But if Bob erases which-path information at his detectors, so the argument goes, Alice's which-path information is also (instantly!) erased and interference ensues at Alice's detectors.
      By turning his quantum eraser on and off, Bob can send an FTL signal
      to Alice in the form of patterns of interference or no-interference.
      The beauty of Kalamidas's scheme resides in his original method of which-path
      erasure. When Bob's path info is certain, one path contain a single photon
      and the other path is empty, symbolized by |10> or |01>."
    • Jack Sarfatti "Kalamidas proposes to erase which-path info by mixing into each path a kind of light whose photon number is uncertain. The source of this number-uncertain light is a coherent state |A> which is mixed with Bob's photons via a weakly reflecting beam splitter ( r --> 0) where A is adjusted so that a "weak
      coherent state" |rA> = |0> + rA |1> blends with whatever is in Bob's path. [2] This scheme leads to 5 possible outputs |01>, |01>, |11>, |02> and |20>. For four of these outputs, the path Bob's photon took is not erased, but whenever Bob's counters read |11>, which path the photon took is uncertain and erasure ensues. Using this scheme, Kalamidas can demonstrate apparent FTL signaling from Bob to Alice."
    • Jack Sarfatti "Once I heard of this scheme, I publicized it on my blog [NH1] and hastened to refute it. I was able to invent a simpler path-erasure scheme using "Gray light" |U> instead of a coherent state (where |U> = x|0> + y|1>) which was easy to refute[NH2]. But I could not refute Kalamidas's original scheme.
      Instead of refuting DK's scheme, I actually enhanced it by showing that if he
      strengthened his "weak coherent state" by expanding it to higher powers of
      (rA), the intensity of his FTL signal would actually increase [NH3]. At about
      this same time I wrote the theme song for an opera celebrating DK's quixotic
      quest [NH4] and issued a second blog post [NH5] publicly challenging the
      physics community to refute DK's audacious scheme. The first physicist to take up the challenge was John Howell at the University of Rochester who produced a general refutation of FTL schemes using photon- mixing of the Kalamidas type [JH1]. John's proof used Displaced Fock States (DFS) as Bob's counter outputs and suggested moreover that Kalamidas had erred by using Photon-added Coherent States (PACS) instead of DFS.
      "Everyone knows" that DFS are the correct output states for this kind of experiment, Howell insisted. This has been shown both theoretically and by experiment, for instance here [L&B] and here [W/MS/al]. Kalamidas could not see where his derivation was flawed, but it was clear that his states were of the PACS type. So if DFS was correct, he was prepared to reluctantly admit defeat. However Martin Suda from Austrian Institute of Technology came to the rescue with a simple proof, that at this particular stage of the beam-splitter algebra, both PACS and DFS were correct states [MS1], an astonishing result I call "the Martin Suda Paradox".
    • Jack Sarfatti Nick continued: "Coincidently, GianCarlo Ghirardi had just published a review of past FTL signaling schemes [GCG1] and was drawn into the debate. Together with Raffaele Romano, Ghirardi produced a general refutation [G&R] based on "unitary operations." If the operations that Kalamidas performed on his photons were all unitary, then G & R showed that no FTL signaling would ensue.
      Then one of Kalamidas's former teachers and author of several lucid texts on
      quantum-optics, Christopher Gerry, composed a general refutation [CG/etal]
      based on PACS, the same states Kalamidas had used in his scheme. John
      Howell, at about the same time, published a slightly different refutation [JH2]
      also based on PACS.
    • Jack Sarfatti "One might imagine that, confronted with so many general refutations from all sides, that Kalamidas would cave in and admit defeat. But a funny thing happened on the way to the refutation.
      Despite all the general proofs that his scheme was impossible, no one had
      been able to find a mistake in Kalamidas's math nor his physics. It was true
      that his scheme involved an APPROXIMATION but approximations are used
      all the time in physics. DK's "weak coherent state", for instance, is a veritable
      workhorse of quantum optics, is quite well-understood and appears in numerous experiments where it causes no paradoxical behavior. Kalamidas could cite considerable precedent for using this approximation. One of the reviewers quite rightly pointed out that if the general proofs (which contain no approximations) said that DK's FTL scheme could not work, then that certainly spelled doom for all approximate schemes such as the one DK was proposing. To which DK boldly replied: since you are so certain--because of your general proofs--that I am wrong, then it should be "easy pickins" for you to discover my mistake. But no one has yet met this Kalamidas challenge."
    • Jack Sarfatti "There are two issues here 1. the PACS vs DFS issue and 2. the EXACT vs
      APPROXIMATION issue.
      General refutations using both the PACS and DFS formulations have been
      derived but the PACS APPROXIMATION scheme has not been refuted. It
      remains a mystery why this refutation has not occurred.
      To top things off, Martin Suda formulated a Kalamidas-like scheme using
      DFS APPROXIMATION instead of PACS [MS2]. Suda's new scheme, even
      though approximate, was easily refuted--all the FTL signaling terms obligingly
      summed to zero. However, Martin's nice refutation was spoiled by the
      presence of an ugly non-physical |00> term which no one could justify or
      explain.
      What is the meaning of this impasse? Why can't Kalamidas's simple approximation be refuted when the unapproximated schemes are easily destroyed.
      Martin faintly suspects it has to do with the way the vacuum states |0> are
      treated in approximation schemes. I've always been confused whenever vacuum
      states appear in calculations mixed with "real states". Maybe Kalamidas's
      stubbornly unrefuted FTL scheme (which is certainly wrong, make no
      mistake) has something new and subtle to teach us about boson algebra."
      Nick Herbert (quanta@cruzio.com) June 5, 2013
    • Jack Sarfatti REFERENCES
      [1] Nick Herbert "Faster Than Light: Superluminal Loopholes in
      Physics" NAL (1989)<http://www.amazon.com/gp/product/
      0452263174?ie=UTF8&tag=nikkherbert-20>
      - 4 -
      [2] A coherent state is conventionally written |alpha>, where "alpha"
      is a complex number. For typographical convenience, I write a
      coherent state as |A> where A is understood to be the upper-case
      Greek "alpha".
      [DK1] Demetrios Kalamidas "A Proposal for a Feasible Quantum-
      Optical Experiment to Test the Validity of the No-signaling
      Theorem" <http://lanl.arxiv.org/abs/1110.4629>--Kalamidas's
      original proposal in the physics arXiv.
      [NH1] Nick Herbert "The Kalamida Experiment (blog)" <http:/
      /quantumtantra.blogspot.com/2013/02/the-kalamidasexperiment.
      html>--Publicizing (#1) DK's FTL communication
      scheme; Confirmation of APPROX DK FTL Scheme
      [NH2] Nick Herbert "The Kalamidas Experiment (pdf)" <http:/
      /quantumtantra.com/KalamidasFINAL.pdf>--Refutation of FULL
      Gray-light version of DK FTL Scheme. (In these references "FULL"
      means NO APPROXIMATIONS)
      [NH3] Nick Herbert "Maximizing the Kalamidas Effect (pdf)" <http:/
      /quantumtantra.com/Kalamidas1.pdf>--Expanding & Confirming
      DK APPROX FTL Scheme to higher powers of rA.
      [NH4] Nick Herbert "Demetrios! The Opera (blog)" <http:/
      /quantumtantra.blogspot.com/2013/02/demetrios-opera.html>--
      Demetrios! The Opera.
      [NH5] Nick Herbert (blog) "FTL Signaling Made Easy" <http:/
      /quantumtantra.blogspot.com/2013/05/ftl-signaling-madeeasy.
      html>--Publicizing (#2) APPROX DK FTL Signaling Scheme.
      [JH1] John Howell "Refutation of the Kalamidas's Signaling" (private
      communication) //Refutation of FULL DFS version of DK FTL Scheme
      - 5 -
      [W/MS/al] A. Windhager, Martin Suda et al "Quantum Interference
      between a Single-photon Fock State and a Coherent State" <http:/
      /arxiv.org/pdf/1009.1844.pdf> -- derivation of DFS output of a
      beamsplitter with input |A, 1>
      [L&B] AI Lvovski & SA Babichev "Synthesis and Tomographic
      Characterization of the Displaced Fock State" <http://lanl.arxiv.org/
      abs/quant-ph/0202163>--production and measurement of DFS at
      beam splitter output.
      [GCG1] GianCarlo Ghirardi "Entanglement, Non-locality,
      Superluminal Signaling and Cloning" <http://lanl.arxiv.org/pdf/
      1305.2305v1.pdf>--Refutation of several historical FTL signaling
      schemes
      [G&R] GianCarlo Ghirardi & Raffaelle Romano "On a quite recent
      proposal of faster than light communication" (private
      communication)--General Refutation of all Full Unitary Systems.
      [CGetal] Christopher Gerry, VV, Ugur Gu╠łney & Mark Hillery
      "Comment on a superluminal signaling scheme" (private
      communication)--Refutation of FULL PACS version of DK FTL
      Scheme
      [MS1] "MARTIN SUDA PARADOX" (private communication)--"Martin
      Suda Paradox": Symmetry of PACS and DFS at BS output.
      [MS2] Martin Suda "Interferometry at the 50/50 BS" (private
      communication)--refutation of APPROX DFS version of DK FTL
      Scheme
      [JH2} John Howell "Full Calculation No Approximation" (private
      communication)//refutation of FULL PACS version of DK FTL
      Scheme.
  1.  
  1.  
  2. Like · · Share
    • Jack Sarfatti On Jun 2, 2013, at 7:22 AM, JACK SARFATTI <adastra1@me.com> wrote:

      Yes it's always the case that if the time evolution is unitary signal interference terms cancel out. That is essence of the no-signal argument.

      It's what defeated my 1978 attempt usin
      g two interferometers on each end of the pair source that David Kaiser describes in How the Hippies Saved Physics that was in first edition of Gary Zukav's Dancing Wu Li Masters. Stapp gave one of the first no-signal proofs in response to my attempt.

      I. However, one of the tacit assumptions is that all observables must be Hermitian operators with real eigenvalues and a complete orthogonal basis.

      II. Another assumption is that the normalization once chosen should not depend on the free will of the experimenter.

      Both & II are violated by Glauber states. The linear unitary dynamics is also violated when the coherent state is Higgs-Goldstone vacuum/groundstate expectation value order parameter of a non-Hermitian boson second quantized field operator where the c number local nonlinear nonunitary Landau-Ginzburg equation in ordinary space replaces the linear unitary Schrodinger equation in configuration (or Wigner phase space more generally) as the dominant dynamic. P. W. Anderson called this "More is different."

      For example in my toy model NORMALIZED so as to rid us of that damn spooky telepathic psychokinetic voodoo magick without magic

      |A,B> = [2(1 + |<w|z>|^2)]^-1/2[|0>|z> + |1>|w>]

      <0|1> = 0 for Alice A

      <w|z> =/= 0 for Bob B

      Take

      Trace over B {|0><0| |A,B><A,B|} = 1/2 etc.

      probability is conserved and Alice receives no signal from Bob in accord with Abner Shimony's "passion at a distance".

      However, probability is not conserved on Bob's side!

      Do the calculation if you don't believe me.

      Two more options

      i. use 1/2^1/2 normalization, then we get an entanglement signal for Alice with violation of probability conservation for Alice, though not for Bob

      ii Final Rube Goldberg option (suspect)

      use different normalizations depending on who does the strong von Neumann measurement Alice or Bob.

      Now this is a violation of orthodox quantum theory ladies and gentlemen.

      Sent from my iPhone in San Francisco, Russian Hill

      ====================================================================
    • Jack Sarfatti On Jun 2, 2013, at 12:56 AM, nick herbert <quanta@cruzio.com> wrote:

      Kalamidas Fans--

      I have looked over Martin Suda's two papers entitled 1. Taylor expansion of Output States and 2. Interferometry at the 50/50 BS.


      My conclusion is that Martin is within one millimeter of a solid refutation of the kalamidas scheme. Congratulations, Martin, on
      achieving this result and on paying so much close attention to kalamidas's arguments.

      The result, as expected, comes from a very strange direction. In particular, the approximation does not enter into Suda's refutation.
      Martin accepts all of kalamidas's approximations and refutes him anyway.

      I have not followed the math in detail but I have been able to comprehend the essential points.

      First, on account of the Martin Suda paradox, either PACS or DFS can be correctly used at this stage of the argument. So martin
      derives the kalamidas result both ways using PACS (Kalamidas's Way) and then DFS (Howell's Way). Both results are the same.

      Then Martin calculates the signal at the 50/50 beam splitter (Alice's receiver) due to Bob's decision to mix his photon with a coherent state |A>.
      Not surprisingly Martin discovers lots of interference terms.

      So Kalamidas is right.

      However all of these interference terms just happen to cancel out.

      So Kalamidas is wrong.

      Refutation Complete. Martin Suda Wins.

      This is a very elegant refutation and if it can be sustained, then Kalamidas's Scheme has definitively
      entered the Dustbin of History. And GianCarlo can add it to his upcoming review of refuted FTL schemes.

      But before we pass out the medals, there is one feature of the Suda Refutation that needs a bit of justification.
      Suda's formulation of the Kalamidas Scheme differs in one essential way from Demetrios's original presentation.
      And it is this difference between the two presentations that spells DOOM FOR DEMETRIOS.

      Kalamidas has ONE TERM |1,1> that erases which-way information and Suda has two. Suda's EXTRA TERM is |0,0>
      and represents the situation where neither of Bob's primary counters fires.

      Having another term that erases which-way information would seem to be good, in that the Suda term might be expected to increase
      the strength of the interference term.

      However--and this is the gist of the Suda refutation--the additional Suda term |0.0> has precisely the right amplitude
      to EXACTLY CANCEL the effect of the Kalamidas |1,1> term. Using A (Greek upper-case alpha) to represent "alpha",
      Martin calculates that the amplitude of the Kalamidas |1,1> term is A. And that the amplitude of the Suda |0,0> term is -A*.

      And if these amplitudes are correct, the total interference at Alice's detectors completely disappears.

      Congratulations, Martin. I hope I have represented your argument correctly.

      The only task remaining is to justify the presence (and the amplitude) of the Suda term. Is it really physically reasonable,
      given the physics of the situation, that so many |0,0> events can be expected to occur in the real world?

      I leave that subtle question for the experts to decide.

      Wonderful work, Martin.

      Nick Herbert

      ====================================================================
Feb 07
  • ack Sarfatti Jack Sarfatti On Feb 6, 2013, at 3:49 PM, nick herbert <quanta@cruzio.com> wrote:

    Again a very persuasive argument.

    You are correct that the |0>|1> term is small.

    But it is multiplied by a different |0>|1> term (to form the product state |0>|1>|0>|1>.
    The coefficients of this different |0>|1> term are surprisingly large.

    JS: Ah so, Holmes.

    NH: As to your ability to make alphaxr as large as you please. Do you think you can do this
    and 1) preserve normalization of the input coherent state? 2) preserve the truncation condition?

    JS: This issue of the normalization of the input coherent state is non-trivial. In the literature the authors on entangled coherent Glauber state put in what looks like an observer-dependent normalization forcing the Born probability rule to be obeyed. This can always be done ad_hoc, but it is not part of the rules of orthodox quantum theory where unitary time evolution guarantees invariance of the initial normalization choice that should not depend on what future choice is made by the measuring apparatus (for strong Von-Neumann projections).

    For example, for a trapped ion internal qubit +,- entangled with its coherent phonon center of mass motion z. z'+ instead of the unitary invariant choice

    | > = (1/2)^1/2[|z>|+> + |z'>|->]

    The Born rule trace over the non-orthogonal Glauber states gives the seemingly inconsistent result

    P(+) = P(-) = (1/2)[1 + |<z|z'>|^2]

    P(+) + P(-) > 1

    which I say is a breakdown of the Born probability rule in the sense of Antony Valentini's papers.

    The dynamics of Glauber state ground state Higgs-Goldstone-Anderson condensates with ODLRO (Penrose-Onsager) is inherently nonlinear and non-unitary governed by Landau-Ginzburg c-number equations coupled to q-number random noise. The bare part of the noise dynamics sans coupling to the condensate is of course orthodox quantum mechanical.

    Now what the published paper's authors do is to use an ad-hoc

    | > ' = | > = (1/2[1 + |<z|z'>|^2])^1/2[|z>|+> + |z'>|->]

    giving the usual no-signaling

    P(+) = P(-) = 1/2

    NH: And by the way, just what is the wavefunction for the input coherent state before the beam splitter?
    You are never specific about what has to go into the beamsplitter to achieve the performance you describe.
  • Jack Sarfatti On Feb 6, 2013, at 1:49 PM, Demetrios Kalamidas wrote:

    Hi to all,

    Concerning my scheme, as it appears in the paper, lets do a certain type of logical analysis of the purported result:

    Let's say that the source S has produced 1000 pairs of entangled photons in some unit time interval. This means that we have 1000 left-going photons (in either a1 or b1) AND 1000 right-going photons (in either a2 or b2).

    Let's say we have chosen 'r' to be so small that only 1 out of every 1000 right-going photons is actually reflected into modes a3' and b3'. So, 999 right-going photons have been transmitted into modes a2' and b2'.

    In my eq.6, we observe that the 'quantum erasure' part is proportional to 'ra'. Let's say we choose 'ra' such that '|ra|squared', which gives the probability of this outcome, is 10 percent.

    This means that roughly 100 right-going photons have caused 'quantum erasure', for their 100 left-going partners, by mixing with the coherent states in a2' and b2'.

    Thus, "fringes" on the left will be formed that show a variation of up to 100 photons, as phase 'phi' is varied, between the two outputs of beam splitter BS0.

    Now, for this total batch of 1000 right-going photons, ONLY ONE PHOTON, roughly, has made it into a3' or b3' and mixed with the coherent states over there.

    So, even if that ONE PHOTON contributes to "anti-fringes" on the left, it could only produce a variation of, roughly, up to 1 photon, as 'phi is varied, between the two outputs of BS0....and that is nowhere near canceling the "fringe" effect, but can, at most, cause a minute reduction in the "fringe" visibility.

    JS: This seems to be a plausible rational intuitively understandable informal argument. Very nice. However, words alone without the math can be deceiving.

    DK: Please note that we can choose 'r' to be as small as we desire, i.e. we can arrange so that one out of every billion right-going photons can be reflected into a3' and b3' WHILE STILL MAINTAINING the '|ra|squared'=10percent value (by just cranking up the initial coherent state amplitude accordingly).

    I wrote this logical interpretation of my proposal in order to show that Nick's analysis goes wrong somewhere in predicting equal amplitudes for the "fringe" and "anti-fringe" terms.
    Demetrios

    JS: I do hope Demetrios will prove correct of course. Even Nick Herbert desires that. Is young Demetrios the new Arthur? Has he pulled the Sword from The Stone?
On Feb 6, 2013, at 10:49 AM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

Using my number uncertain state |U> = x|0> + y|1> instead of your truncated coherent state,
I calculate that these two outcomes have exactly the SAME AMPLITUDE.

This fact is the essence of the refutation..

agreed that is the question.

On Feb 6, 2013, at 10:41 AM, nick herbert <quanta@cruzio.com> wrote:

>>>>In other words, even though the |0>|1>|0>|1> outcome may produce "anti-fringes", it has nowhere near the amplitude to cancel the "fringes" caused by the |1>|0>|1>|0> outcome....since the former outcome describes a right-going photon being reflected (extremely rare due to vanishing 'r') while the latter outcome describes a right-going photon being transmitted (very likely due to 't' approximately equal to 1).<<<<

A very plausible argument
But restore the missing term, Demetrios,
Do the calculation.
Then see if you still believe
that the |1>|0>|1>|)> term and the |0>|1>|0>|1>
have different amplitudes.

Using my number uncertain state |U> = x|0> + y|1> instead of your truncated coherent state,
I calculate that these two outcomes have exactly the SAME AMPLITUDE.

This fact is the essence of the refutation..


Nick--

I was up all night calculating these terms
and I am pretty sure your scheme is refuted.

Using the Feynman rule the probabilities for these two distinguishable processes are indeed equal
and do not cancel but one process is linked to fringes in Alice's detectors
and the other process is linked to anti-fringes in Alice's detector.

An incoherent equally-weighted sum of fringes and anti-fringes = no interference.

Your error consists of dropping a term that seems to be harmlessly small.
When you restore this term, the scheme becomes an ordinary coincidence-triggered distance interference device.

Since you are more familiar with these sorts of calculations than I am,
I urge you to restore the missing term and recalculate.
I would be surprised if you do not agree
that KISS is refuted.

However your measurement scheme -- ambiguating the Fock states by mixing with states of uncertain photon number --
is very clever and may find some use in less-preposterous applications.

I really have enjoyed interacting with your and your KISS scheme.

Nick

On Feb 6, 2013, at 9:38 AM, Demetrios Kalamidas wrote:

Hi Nick,
 It is both a pleasure and an honor that you have analyzed my scheme to this extent and, thankfully, so far your hard analysis has not disproved it....and may have even generalized and strengthened the argument.
 If my idea is described in a mathematically valid way then, as you seem to point out, the experimental proposal is also a powerful test of the strength of "The Feynman Dictum", which, so far, has never failed.
Thanks Nick
Demetrios

On Wed, 6 Feb 2013 04:32:09 -0800
nick herbert <quanta@cruzio.com> wrote:
Demetrios--
I have been calculating my own version of your KISS proposal
using the state |U> = x|0> + y|1> instead of a coherent state with  alpha amplitude
as input to the beam splitter which you use. Using this state allows  me to avoid
approximations. But yours is a robust proposal and should be immune  to approximations.
Indeed I get the same result as you, making the approximation rx --->  0 to eliminate a small |0>|1> term
as do you. I calculate the amplitude of the quantum erasure term |1>| 0>|1>|0> to be -trxy.
Hence my result for the probability of the FTL effect is 1/2 |etrxy|^2
which is comparable to your 1/2|etralpha|^2.
So far so good. The KISS and KISS(U) calculations give compatible  results. FTL signaling seems secure.
------------
Next I decided to include the small term we both threw away. This  means calculating the amplitude for
the detector response |0>|1>|0>|1>.
Imagine my surprise when I discovered that this (also a quantum  erasure term by the way) amplitude is also trxy
with a plus sign!!!!!!!!!!!!
One might think that this term will exactly cancel your former  quantum erasure term and refute your KISS proposal.
But I do not think that's the way it works. According to the Feynman  rules you add amplitudes for indistinguishable paths,
and add probabilities for distinguishable paths. Since the |1>|0>|1>| 0> result is distinguishable from the |0>|1>|0>|1> result,
it seems that the proper thing to do here is add probabilities rather  than amplitudes. So not only do these two processes
not cancel but THEY DOUBLE THE SIZE OF YOUR FTL EFFECT.
At least that's the way I see it right now.
Seems like my attempt to refute your proposal is traveling in the  opposite direction.
Thanks for the fun.
Nick
Part 2
The more I think about this, the more I am convinced that this  calculation refutes KISS.
The amplitude for |1>|0>|1>|0> is "-trxy"and for |0>|1>|0>|1> is  "+trxy".
If you coincidence-trigger on the detector result |1>|0>|1>|0> you  get fringes.
If you coincidence-trigger on the detector result |0>|1>|0>|1> you  get anti-fringes.
If you do not coincidence-trigger you get an equal mixture of fringe  and anti-fringe.
QED: No FTL signaling.



I thought Nick said the two amplitudes were equal and opposite. If Demetrios is correct below I will be happy to retract my Eulogy for the demise of nonlocal entanglement signaling within ORTHODOX quantum theory as opposed to post-quantum extensions.

On Feb 6, 2013, at 10:07 AM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Hi to all,
I stated that in my previous message that "....thankfully, so far your hard analysis has not disproved it" but forgot to include the text of why I believe this:

The only way for "fringes" on the left wing of the experiment (caused by the |1>|0>|1>|0> term on the right) to be canceled by "anti-fringes" (caused by the |0>|1>|0>|1> term on the right) is if BOTH the |1>|0>|1>|0> term and the |0>|1>|0>|1> term had the SAME AMPLITUDE, and therefore the same probability of happening.

HOWEVER, in my scheme, the |1>|0>|1>|0> outcome is HEAVILY FAVORED when compared to the |0>|1>|0>|1> outcome because of the high asymmetry of the two beam splitters on the right.

In other words, even though the |0>|1>|0>|1> outcome may produce "anti-fringes", it has nowhere near the amplitude to cancel the "fringes" caused by the |1>|0>|1>|0> outcome....since the former outcome describes a right-going photon being reflected (extremely rare due to vanishing 'r') while the latter outcome describes a right-going photon being transmitted (very likely due to 't' approximately equal to 1).

Demetrios
Jack Sarfatti
KISS-OFF! ;-)
  • Jack Sarfatti Yes, Nick most likely the two terms cancel as you say at the end. The problem with all the attempts to derive entanglement signal nonlocality within orthodox quantum theory, is the neglect of relevant terms, which in the end as you show, cancel the result. I wrote at the beginning of this that such may happen here.

    Note, that this does not affect attempts as entanglement signal nonlocality using a more general nonlinear post-quantum theory as in Steven Weinberg's, Henry Stapp's and Antony Valentini's models.

    On Feb 6, 2013, at 4:32 AM, nick herbert <quanta@cruzio.com> wrote:

    Demetrios--

    I have been calculating my own version of your KISS proposal
    using the state |U> = x|0> + y|1> instead of a coherent state with alpha amplitude
    as input to the beam splitter which you use. Using this state allows me to avoid
    approximations. But yours is a robust proposal and should be immune to approximations.

    Indeed I get the same result as you, making the approximation rx ---> 0 to eliminate a small |0>|1> term
    as do you. I calculate the amplitude of the quantum erasure term |1>|0>|1>|0> to be -trxy.

    Hence my result for the probability of the FTL effect is 1/2 |etrxy|^2
    which is comparable to your 1/2|etralpha|^2.

    So far so good. The KISS and KISS(U) calculations give compatible results. FTL signaling seems secure.

    ------------

    Next I decided to include the small term we both threw away. This means calculating the amplitude for
    the detector response |0>|1>|0>|1>.

    Imagine my surprise when I discovered that this (also a quantum erasure term by the way) amplitude is also trxy
    with a plus sign!!!!!!!!!!!!

    One might think that this term will exactly cancel your former quantum erasure term and refute your KISS proposal.

    But I do not think that's the way it works. According to the Feynman rules you add amplitudes for indistinguishable paths,
    and add probabilities for distinguishable paths. Since the |1>|0>|1>|0> result is distinguishable from the |0>|1>|0>|1> result,
    it seems that the proper thing to do here is add probabilities rather than amplitudes. So not only do these two processes
    not cancel but THEY DOUBLE THE SIZE OF YOUR FTL EFFECT.

    At least that's the way I see it right now.

    Seems like my attempt to refute your proposal is traveling in the opposite direction.

    Thanks for the fun.

    Nick

    Part 2
    The more I think about this, the more I am convinced that this calculation refutes KISS.

    The amplitude for |1>|0>|1>|0> is "-trxy"and for |0>|1>|0>|1> is "+trxy".

    If you coincidence-trigger on the detector result |1>|0>|1>|0> you get fringes.

    If you coincidence-trigger on the detector result |0>|1>|0>|1> you get anti-fringes.

    If you do not coincidence-trigger you get an equal mixture of fringe and anti-fringe.

    QED: No FTL signaling.


Jack Sarfatti This is hot. If the effect works it's the basis for a new Intel, Microsoft & Apple combined for those smart venture capitalists, physicists & engineers who get into it. This is as close as we have ever come since I started the ball rolling at Brandeis in 1960-61 & then in mid-70's see MIT Physics Professor David Kaiser's "How the Hippies Save Physics". I first saw this as a dim possibility in 1960 at Brandeis grad school and got into an intellectual fight about it with Sylvan Schweber and Stanley Deser. Then the flawed thought experiment published in the early editions of Gary Zukav's Dancing Wu Li Masters in 1979 - pictured in Hippies book tried to do what DK may now have actually done. That is, control the fringe visibility at one end of an entangled system from the other end without the need of a coincidence counter correlator after the fact. Of course, like Nick Herbert's FLASH at the same time late 70's, it was too naive to work and the nonlinear optics technology was not yet developed enough. We were far ahead of the curve as to the conceptual possibility of nonlocal retrocausal entanglement signaling starting 53 years ago at Brandeis when I was a National Defense Fellow Title IV graduate student.

Jack Sarfatti

about an hour ago near San Francisco
On Feb 5, 2013, at 12:28 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

Thanks Nick. Keep up the good work. I hope to catch up with you on this soon. This may be a historic event of the first magnitude if the Fat Lady really sings this time and shatters the crystal goblet. On the Dark Side this may open Pandora's Box into a P.K. Dick Robert Anton Wilson reality with controllable delayed choice precognition technology. ;-)

On Feb 5, 2013, at 10:38 AM, nick herbert <quanta@cruzio.com> wrote:

Demetrios--

Looking over your wonderful paper I have detected one
inconsistency but it is not fatal to your argument.

On page 3 you drop two r terms because "alpha", the complex
amplitude of the coherent state can be arbitrarily large in
magnitude.

But on page 4 you reduce the magnitude of "alpha" so that
at most one photon is reflected. So now alpha cannot be
arbitrarily large in magnitude.

But this is just minor quibble in an otherwise superb argument.

This move does not affect your conclusion--which seems
to directly follow from application of the Feynman Rule: For distinguishable
outcomes, add probabilities; for indistinguishable outcomes, add amplitudes.

To help my own understanding of how your scheme works,
I have simplified your KISS proposal by replacing your coherent states with
the much simpler state |U> = x|0> + y|1>. I call this variation of your proposal KISS(U)

When this state |U> is mixed with the entangled states at the beamsplitters,
the same conclusion ensues: there are two |1>|1> results on Bob's side of the source
that cannot be distinguished -- and hence must be amplitude added.

The state |U> would be more difficult to prepare in the lab than a weak coherent state
but anything goes in a thought experiment. The main advantage of using state |U>
instead of coherent states is that the argument is simplified to its essence and needs
no approximations. Also the KISS(U) version shows that your argument is independent
of special properties possessed by coherent states such as overcompleteness and non-
orthogonality. The state |U> is both complete and orthogonal -- and works just as well
to prove your preposterous conclusion. --- that there is at least one way of making photon
measurements that violates the No-Signaling Theorem.

Thanks for injecting some fresh excitement into the FTL signaling conversation.

warm regards
Nick Herbert
Like · · Share
David Fernando López Torres, Keith Kenemer and 2 others like this.
View 1 more comment

Jack Sarfatti On Feb 5, 2013, at 1:15 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Nope, no refutation I can think of so far....and I've tried hard.
Demetrios
...See More
33 minutes ago · Like

Joe Ganser Jack do you know a lot of people at CUNY? I take ph.d classes there.
26 minutes ago · Like

Joe Ganser I'm interested in who may do these sorts of topics in NYC
25 minutes ago · Like

Jack Sarfatti Daniel Greenberger!
9 minutes ago · Like · 1

a few seconds ago · Like

 

On Feb 5, 2013, at 1:15 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Nope, no refutation I can think of so far....and I've tried hard.
Demetrios

On Tue, 5 Feb 2013 13:09:28 -0800
nick herbert <quanta@cruzio.com> wrote:
Thanks, Demetrios. I understand now that alpha can be large
while alpha x r is made small. Also I notice that your FTL signaling scheme seems to work both ways. In your illustration the photons on the left side (Alice) are  combined at a 50/50 beam splitter so they cannot be used for which-way information. However if the 50/50 beamsplitter is removed, which-way info is present and the two versions of |1>|1> on the right-hand side (Bob) are now  distinguishable
and must be added incoherently, which presumably will give a  different answer and observably different behavior by Bob's  right-side detectors. So your scheme seems consistent -- FTL signals can be sent in either  direction.
This is looking pretty scary.
Do you happen to have a refutation up your sleeve
or are you just as baffled by this as the rest of us?
Nick

 

 

Therefore, Nick it is premature for you to claim that the full machinery of the Glauber coherent states, i.e. distinguishable over-complete non-orthogonality is not necessary for KISS to work. Let's not rush to judgement and proceed with caution. This technology, if it were to work is as momentous as the discovery of fire, the wheel, movable type, calculus, the steam engine, electricity, relativity, nuclear fission & fusion, Turing machine & Von Neumann's programmable computer concept, DNA, transistor, internet ...

On Feb 5, 2013, at 12:18 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Hi Nick,

 And thanks much for your careful examination of my scheme....however, there appears to be a misunderstanding.
 Let me explain:

"On page 3 you drop two r terms because "alpha", the complex amplitude of the coherent state can be arbitrarily large in magnitude."

I drop the two terms in eq.5b because they are proportional to 'r'....and 'r' approaches zero. However, the INITIAL INPUT amplitude, 'alpha', of each coherent state can be as large as we desire in order to get whatever SMALL BUT NONVANISHING AND SIGNIFICANT product 'r*alpha', which is related to the terms I retain.

In other words, for whatever 'r*alpha' we want, lets say 'r*alpha'=0.2, 'r' can be as close to zero as we want since we can always input a coherent state with large enough initial 'alpha' to give us the 0.2 amplitude that we want.

So, terms proportional to 'r' are vanishing, while terms proportional to 'r*alpha' are small but significant and observable.
You state:

"But on page 4 you reduce the magnitude of "alpha" so that at most one photon is reflected. So now alpha cannot be arbitrarily large in magnitude."

The magnitude of 'alpha' is for the INITIAL coherent states coming from a3 and b3, BEFORE they are split at BSa and BSb. It is this 'alpha' that is pre-adjusted, according to how small 'r' is, to give us an appropriately small reflected magnitude, i.e. 'r*alpha'=0.2, so that the "....weak coherent state containing at most one photon...." condition is reasonably valid.

Demetrios


On Feb 5, 2013, at 12:28 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

Thanks Nick. Keep up the good work. I hope to catch up with you on this soon. This may be a historic event of the first magnitude if the Fat Lady really sings this time and shatters the crystal goblet. On the Dark Side this may open Pandora's Box into a P.K. Dick Robert Anton Wilson reality with controllable delayed choice precognition technology. ;-)

On Feb 5, 2013, at 10:38 AM, nick herbert <quanta@cruzio.com> wrote:

Demetrios--

Looking over your wonderful paper I have detected one
inconsistency but it is not fatal to your argument.

On page 3 you drop two r terms because "alpha", the complex
amplitude of the coherent state can be arbitrarily large in
magnitude.

But on page 4 you reduce the magnitude of "alpha" so that
at most one photon is reflected. So now alpha cannot be
arbitrarily large in magnitude.

But this is just minor quibble in an otherwise superb argument.

This move does not affect your conclusion--which seems
to directly follow from application of the Feynman Rule: For distinguishable
outcomes, add probabilities; for indistinguishable outcomes, add amplitudes.

To help my own understanding of how your scheme works,
I have simplified your KISS proposal by replacing your coherent states with
the much simpler state |U> = x|0> + y|1>. I call this variation of your proposal KISS(U)

When this state |U> is mixed with the entangled states at the beamsplitters,
the same conclusion ensues: there are two |1>|1> results on Bob's side of the source
that cannot be distinguished -- and hence must be amplitude added.

The state |U> would be more difficult to prepare in the lab than a weak coherent state
but anything goes in a thought experiment. The main advantage of using state |U>
instead of coherent states is that the argument is simplified to its essence and needs
no approximations. Also the KISS(U) version shows that your argument is independent
of special properties possessed by coherent states such as overcompleteness and non-
orthogonality. The state |U> is both complete and orthogonal -- and works just as well
to prove your preposterous conclusion. --- that there is at least one way of making photon
measurements that violates the No-Signaling Theorem.

Thanks for injecting some fresh excitement into the FTL signaling conversation.

warm regards
Nick Herbert



  • On Feb 3, 2013, at 12:42 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

    Fred, I think you are making an error here. The vacuum |0> is as good a state as |1> in Fock space for a given mode-radiation oscillator. DK's eq. 1 is a FOUR PHOTON state - two REAL PHOTONS & TWO VIRTUAL PHOTONS

    Note also that Glauber coherent states use |0> in an fundamental way.

    quantum optics interferometer experiments use the |0> states e.g. papers by Carlton Caves

    http://info.phys.unm.edu/~caves/

    http://info.phys.unm.edu/~caves/research.html

    http://info.phys.unm.edu/~caves/talks/talks.html


    Search Results
    [PDF] Quantum-limited measurements: One physicist's crooked path from ...
    www.phys.virginia.edu/Announcements/Seminars/.../S1466.pd...
    File Format: PDF/Adobe Acrobat - Quick View
    physicist's crooked path from quantum optics to quantum information. I. Introduction. II. Squeezed states and optical interferometry. III. ... Carlton M. Caves ...
    [PDF] Quantum metrology - University of New Mexico
    info.phys.unm.edu/~caves/talks/qmetrologylectures.pdf
    File Format: PDF/Adobe Acrobat - Quick View
    Carlton M. Caves. Center for Quantum ... Ramsey interferometry, cat states, and spin squeezing. Carlton M. ... Weinstein, and N. Mavalvala, Nature Physics 4, ...



    On Feb 3, 2013, at 12:26 PM, fred alan wolf <fawolf@ix.netcom.com> wrote:

        Nick and Demetrios, basic quantum physics tells me that eq. 1 of
    KISS is a 4-photon state. That is my point. Let the Hamiltonian go. Ergo, to
    claim it as 2-photon state cannot be correct. Eq. 1 says something about
    phases as well.  If I write a quantum wave function as a sum over i of
    |ai>|bi>|ci>|di> then there must be 4 objects, not two, regardless of how
    large is i.  Even if |ai> is a sum of possibilities such as (|A1>+|A2>) and
    similarly for the bi, ci and di states, I still can't get this to reduce to
    a sum over two particle states.  Nicht wahr?     So I am confused how you both seem to see this as OK as far as
    quantum physics is concerned.

        Jack, do you or do you not see my point?   
    Best Wishes,

    Fred Alan Wolf Ph.D.  aka Dr. Quantum ®
     
    Jack Sarfatti Hi all,

    I'll quickly respond to Fred's question. The state in eq.1 is perfectly legitimate and has been experimentally realized already.
    In this scheme it is tacitly assumed that the source S is a down-conversion source, since this is by far the main way in which entangled photon pairs are created. These sources need a pump to stimulate the nonlinear medium (i.e. down-conversion crystal).
    Usually about one in every million pump photons are split into an entangled pair, each photon of which comes out at a specific angle and energy. The way to create two photons in modes a1a2 is to have the pump come from the bottom and pass upward; the way to create two photons in modes b1b2 is the BACK-REFLECT the same pump downward through the crystal again.
    So,each run of the experiment is ONE DOUBLE-PASS of the pump through the crystal....most of the times you get nothing and, to very good approximation, the rest of the time you get one pair created (either in a1a2 or b1b2)....Of course there is also the far smaller amplitude of creating two pairs (one in a1a2 and one in b1b2, or two in a1a2, or two in b1b2)....according to the expansion of the Hamiltonian....but these are negligible terms and do not affect the outcomes in all these entanglement experiments.
    Demetrios
  • Jack Sarfatti On Feb 3, 2013, at 11:48 AM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

    I agree with Nick.

    On Feb 3, 2013, at 11:25 AM, nick herbert <quanta@cruzio.com> wrote:

    No need for Hamiltonians, Fred.
    The KISS proposal is as simple as LEGOs.
    Every part of it is something
    THAT HAS ALREADY BEEN DEMONSTRATED IN A LAB.

    Kalamidas has put these existing Legos together
    in an imaginative way that seems to permit
    superluminal signaling.

    But probably does not.

    If you, Fred, are waiting for a Hamiltonian formulation
    of this experiment you will be waiting for a long time
    and will have essentially disconnected yourself
    from the KISS adventure.

    Nick Herbert
    KISS = Kalamidas's Instant Signaling Scheme
    ---- end of Nick's message above, I wrote:
    OK there are two separate issues here.

    Question 1: Fred if DK's wave function

    Could be made, then do you agree with DK's logic for the rest of the paper.

    I think the above wave function is perfectly legitimate in principle although whether one can make it in the lab is another question.

    (1) is perfectly sensible in quantum field theory in Fock space.

    There are four radiation oscillators with two real photons and two zero point photons distributed among them. The vacuum states |0> are legitimate states.

    Question 2. Accepting (1) is DK's logic etc. correct? I think Nick Herbert is working on that question.

    I personally am still thinking about the whole thing looking at Mandel as well and trying to understand the whole thing better.

    My previous work on the Glauber state distinguishable non-orthogonality loop hole in the no-signaling belief is generally compatible with the spirit of what DK is proposing. I mean

    On Feb 3, 2013, at 9:53 AM, fred alan wolf wrote:

    Guys and girls,

    I don't believe this will work simply because to my knowledge there is no foundation based on quantum physics which supports this initial supposedly 2-particle quantum wave function. What Hamiltonian does it solve? You can always invent quantum wave functions (which are not connected to reality) but to claim this one (which apparently uses 4 photons not 2) has solved the ftl problem is simply bad physics as I see it. If I am wrong here, will somebody explain how this quantum wave function is a two body quantum wave function? Can you show me the Hamiltonian it is solution for?

    Best Wishes,

    Fred Alan Wolf Ph.D. aka Dr. Quantum