Text Size

Stardrive

Tag » P.K.Dick
Apple's Killer App for Iphone? Photographing & videoing the future? P.K. Dick rises from his grave. ;-)
Like · · Share
  • Jack Sarfatti Begin forwarded message:

    From: JACK SARFATTI <sarfatti@pacbell.net>
    Subject: [ExoticPhysics] Spacelike (FTL) Entanglement Signals with Trapped Ions? "magic wand" Apple's killer app. ; -)
    Date: February 11, 2013 8:22:02 PM PST
    To: Exotic Physics <exoticphysics@mail.softcafe.net>
    Reply-To: Jack Sarfatti's Workshop in Advanced Physics <exoticphysics@mail.softcafe.net>

    Indeed, unless I am mistaken, this ultimately solid state system can be packaged into an Apple I phone to take photographs of the future seen in the past.

    "6.5. Quantum Teleportation Mechanical States
    Analogous to continuous-variable teleportation of optical states [220], one can teleport the quantum state of one mechanical oscillator to the other, if two entangled squeezed
    beams are used to drive them, each of their positions are measured | and with results fed back to the other one (as shown in Fig. 18).

    http://xxx.lanl.gov/pdf/1302.1924.pdf

    Imagine we can do Fig 18 with phonons rather than photons in some long crystal rod.

    Each mechanical oscillator A & B is a trapped ion with internal qubits 1,0 eigenvalues at the two ends of the crystal rod ("magick wand" ;-))

    The coherent phonon Glauber states are z & z' for the center of mass motions of the ions.

    The initial state is

    |A,B>i =(1/2)^1/2[|1>A|z>A + |0>A|z'>A + |1>B|z>B + |0>B|z'>B]

    after the entanglement swapping via teleportation of the Glauber coherent phonon states the prepared final state is

    |A,B>f = (1/2)^1/2[|1>A|z>B + |0>A|z'>B + |1>B|z>A + |0>B|z'>A]

    Use the Born rule in density matrix trace formalism to get e.g.

    P(1)A = (1/2)(1 + | B<z|z'>B |^2)

    This violates the parameter independence no-signal arguments of orthodox quantum theory because the Glauber coherent states are macroscopically distinguishable and non-orthogonal.

    The Born probability rule breaks down in Antony Valentini's sense for Glauber states when they are entangled with other states.

    P(1)A + P(0)A = 1 + | B<z|z'>B |^2

    Not only can A & B be spacelike separated, but we can operate the "magick wand" in Wheeler delayed choice mode in which a tiny video camera is at B which transmits images and audio from A's future back to A in the past.

    Indeed, this solid state system can be packaged into an Apple I phone to take photographs of the future.

    No doubt those ET's in their magnificent flying disks have such crystals?

    _______________________________________________
    ExoticPhysics mailing list
    ExoticPhysics@mail.softcafe.net
    http://mail.softcafe.net/cgi-bin/mailman/listinfo/exoticphysics
    xxx.lanl.gov


Jack Sarfatti This is hot. If the effect works it's the basis for a new Intel, Microsoft & Apple combined for those smart venture capitalists, physicists & engineers who get into it. This is as close as we have ever come since I started the ball rolling at Brandeis in 1960-61 & then in mid-70's see MIT Physics Professor David Kaiser's "How the Hippies Save Physics". I first saw this as a dim possibility in 1960 at Brandeis grad school and got into an intellectual fight about it with Sylvan Schweber and Stanley Deser. Then the flawed thought experiment published in the early editions of Gary Zukav's Dancing Wu Li Masters in 1979 - pictured in Hippies book tried to do what DK may now have actually done. That is, control the fringe visibility at one end of an entangled system from the other end without the need of a coincidence counter correlator after the fact. Of course, like Nick Herbert's FLASH at the same time late 70's, it was too naive to work and the nonlinear optics technology was not yet developed enough. We were far ahead of the curve as to the conceptual possibility of nonlocal retrocausal entanglement signaling starting 53 years ago at Brandeis when I was a National Defense Fellow Title IV graduate student.

Jack Sarfatti

about an hour ago near San Francisco
On Feb 5, 2013, at 12:28 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

Thanks Nick. Keep up the good work. I hope to catch up with you on this soon. This may be a historic event of the first magnitude if the Fat Lady really sings this time and shatters the crystal goblet. On the Dark Side this may open Pandora's Box into a P.K. Dick Robert Anton Wilson reality with controllable delayed choice precognition technology. ;-)

On Feb 5, 2013, at 10:38 AM, nick herbert <quanta@cruzio.com> wrote:

Demetrios--

Looking over your wonderful paper I have detected one
inconsistency but it is not fatal to your argument.

On page 3 you drop two r terms because "alpha", the complex
amplitude of the coherent state can be arbitrarily large in
magnitude.

But on page 4 you reduce the magnitude of "alpha" so that
at most one photon is reflected. So now alpha cannot be
arbitrarily large in magnitude.

But this is just minor quibble in an otherwise superb argument.

This move does not affect your conclusion--which seems
to directly follow from application of the Feynman Rule: For distinguishable
outcomes, add probabilities; for indistinguishable outcomes, add amplitudes.

To help my own understanding of how your scheme works,
I have simplified your KISS proposal by replacing your coherent states with
the much simpler state |U> = x|0> + y|1>. I call this variation of your proposal KISS(U)

When this state |U> is mixed with the entangled states at the beamsplitters,
the same conclusion ensues: there are two |1>|1> results on Bob's side of the source
that cannot be distinguished -- and hence must be amplitude added.

The state |U> would be more difficult to prepare in the lab than a weak coherent state
but anything goes in a thought experiment. The main advantage of using state |U>
instead of coherent states is that the argument is simplified to its essence and needs
no approximations. Also the KISS(U) version shows that your argument is independent
of special properties possessed by coherent states such as overcompleteness and non-
orthogonality. The state |U> is both complete and orthogonal -- and works just as well
to prove your preposterous conclusion. --- that there is at least one way of making photon
measurements that violates the No-Signaling Theorem.

Thanks for injecting some fresh excitement into the FTL signaling conversation.

warm regards
Nick Herbert
Like · · Share
David Fernando López Torres, Keith Kenemer and 2 others like this.
View 1 more comment

Jack Sarfatti On Feb 5, 2013, at 1:15 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Nope, no refutation I can think of so far....and I've tried hard.
Demetrios
...See More
33 minutes ago · Like

Joe Ganser Jack do you know a lot of people at CUNY? I take ph.d classes there.
26 minutes ago · Like

Joe Ganser I'm interested in who may do these sorts of topics in NYC
25 minutes ago · Like

Jack Sarfatti Daniel Greenberger!
9 minutes ago · Like · 1

a few seconds ago · Like

 

On Feb 5, 2013, at 1:15 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Nope, no refutation I can think of so far....and I've tried hard.
Demetrios

On Tue, 5 Feb 2013 13:09:28 -0800
nick herbert <quanta@cruzio.com> wrote:
Thanks, Demetrios. I understand now that alpha can be large
while alpha x r is made small. Also I notice that your FTL signaling scheme seems to work both ways. In your illustration the photons on the left side (Alice) are  combined at a 50/50 beam splitter so they cannot be used for which-way information. However if the 50/50 beamsplitter is removed, which-way info is present and the two versions of |1>|1> on the right-hand side (Bob) are now  distinguishable
and must be added incoherently, which presumably will give a  different answer and observably different behavior by Bob's  right-side detectors. So your scheme seems consistent -- FTL signals can be sent in either  direction.
This is looking pretty scary.
Do you happen to have a refutation up your sleeve
or are you just as baffled by this as the rest of us?
Nick

 

 

Therefore, Nick it is premature for you to claim that the full machinery of the Glauber coherent states, i.e. distinguishable over-complete non-orthogonality is not necessary for KISS to work. Let's not rush to judgement and proceed with caution. This technology, if it were to work is as momentous as the discovery of fire, the wheel, movable type, calculus, the steam engine, electricity, relativity, nuclear fission & fusion, Turing machine & Von Neumann's programmable computer concept, DNA, transistor, internet ...

On Feb 5, 2013, at 12:18 PM, Demetrios Kalamidas <dakalamidas@sci.ccny.cuny.edu> wrote:

Hi Nick,

 And thanks much for your careful examination of my scheme....however, there appears to be a misunderstanding.
 Let me explain:

"On page 3 you drop two r terms because "alpha", the complex amplitude of the coherent state can be arbitrarily large in magnitude."

I drop the two terms in eq.5b because they are proportional to 'r'....and 'r' approaches zero. However, the INITIAL INPUT amplitude, 'alpha', of each coherent state can be as large as we desire in order to get whatever SMALL BUT NONVANISHING AND SIGNIFICANT product 'r*alpha', which is related to the terms I retain.

In other words, for whatever 'r*alpha' we want, lets say 'r*alpha'=0.2, 'r' can be as close to zero as we want since we can always input a coherent state with large enough initial 'alpha' to give us the 0.2 amplitude that we want.

So, terms proportional to 'r' are vanishing, while terms proportional to 'r*alpha' are small but significant and observable.
You state:

"But on page 4 you reduce the magnitude of "alpha" so that at most one photon is reflected. So now alpha cannot be arbitrarily large in magnitude."

The magnitude of 'alpha' is for the INITIAL coherent states coming from a3 and b3, BEFORE they are split at BSa and BSb. It is this 'alpha' that is pre-adjusted, according to how small 'r' is, to give us an appropriately small reflected magnitude, i.e. 'r*alpha'=0.2, so that the "....weak coherent state containing at most one photon...." condition is reasonably valid.

Demetrios


On Feb 5, 2013, at 12:28 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

Thanks Nick. Keep up the good work. I hope to catch up with you on this soon. This may be a historic event of the first magnitude if the Fat Lady really sings this time and shatters the crystal goblet. On the Dark Side this may open Pandora's Box into a P.K. Dick Robert Anton Wilson reality with controllable delayed choice precognition technology. ;-)

On Feb 5, 2013, at 10:38 AM, nick herbert <quanta@cruzio.com> wrote:

Demetrios--

Looking over your wonderful paper I have detected one
inconsistency but it is not fatal to your argument.

On page 3 you drop two r terms because "alpha", the complex
amplitude of the coherent state can be arbitrarily large in
magnitude.

But on page 4 you reduce the magnitude of "alpha" so that
at most one photon is reflected. So now alpha cannot be
arbitrarily large in magnitude.

But this is just minor quibble in an otherwise superb argument.

This move does not affect your conclusion--which seems
to directly follow from application of the Feynman Rule: For distinguishable
outcomes, add probabilities; for indistinguishable outcomes, add amplitudes.

To help my own understanding of how your scheme works,
I have simplified your KISS proposal by replacing your coherent states with
the much simpler state |U> = x|0> + y|1>. I call this variation of your proposal KISS(U)

When this state |U> is mixed with the entangled states at the beamsplitters,
the same conclusion ensues: there are two |1>|1> results on Bob's side of the source
that cannot be distinguished -- and hence must be amplitude added.

The state |U> would be more difficult to prepare in the lab than a weak coherent state
but anything goes in a thought experiment. The main advantage of using state |U>
instead of coherent states is that the argument is simplified to its essence and needs
no approximations. Also the KISS(U) version shows that your argument is independent
of special properties possessed by coherent states such as overcompleteness and non-
orthogonality. The state |U> is both complete and orthogonal -- and works just as well
to prove your preposterous conclusion. --- that there is at least one way of making photon
measurements that violates the No-Signaling Theorem.

Thanks for injecting some fresh excitement into the FTL signaling conversation.

warm regards
Nick Herbert


Talking on the signal nonlocality I.J. Good's GOD(D) Phone to P.K. Dick's VALIS (Puharich's SPECTRA) in our conscious cosmological computer simulated Destiny Matrix Virtual Universe? ;-)
Like · · Share
  • Jack Sarfatti "Extrapolations to the distant futurity of trends in the growth of high-performance computing (HPC) have led philosophers to question —in a logically compelling way— whether the universe that we currently inhabit is a numerical simulation performed by our distant descendants ... [1].therefore in principle there always remains the possibility for the simulated to discover the simulators."
  • Jack Sarfatti "The spectrum of the highest energy cosmic rays provides the most stringent constraint that we have found on the lattice spacing of a universe simulation"
  • Jack Sarfatti "The most striking feature of the scenario in which the lattice provides the cut off to the cosmic ray spectrum is that the angular distribution of the highest energy components would exhibit cubic symmetry in the rest frame of the lattice, deviating significantly from isotropy."
  • Jack Sarfatti "7 It has been recently pointed out that the domain-wall formulation of lattice fermions provides a mechanism by which the number of generations of fundamental particles is tied to the form of the dispersion relation [34]. Space-time would then be a topological insulator."
  • Jack Sarfatti "5 Hsu and Zee [30] have suggested that the CMB provides an opportunity for a potential creator/simulator of our universe to communicate with the created/simulated without further intervention in the evolution of the universe. If, in fact, it is determ...See More
  • Jack Sarfatti "For instance, it could be that the observed non-vanishing value of the cosmological constant is simply a rounding error resulting from the number zero being entered into a simulation program with insufficient precision."
  • Jack Sarfatti Constraints on the Universe as a Numerical Simulation
    Silas R. Beane,1, 2, Zohreh Davoudi,3, y and Martin J. Savage3,
    1Institute for Nuclear Theory, Box 351550, Seattle, WA 98195-1550, USA
    2Helmholtz-Institut für Strahlen- und Kernphysik (Theorie),
    ...See More