Text Size

Stardrive

Tag » Yakir Aharonov

Einstein was writing all this before modern quantum theory. Today we know that the Aether is the quantum vacuum filled with virtual particles that are off mass-shell i.e. E^2 =/= (pc)^2 + (mc^2)^2 Also contact forces are caused by off-mass shell virtual photons in the non-radiative near field including longitudinal polarizations absent in real photons on the mass shell (light cone). Action at a distance is in the Wheeler-Feynman classical sense confined to the photon mass shell (aka light cone) but including advanced back from the future destiny waves generalized to "confirmation" quantum de Broglie waves by John Cramer in his TI. This is in addition to the more familiar retarded history waves. de Broglie waves are faster than light in phase quantum information when m =/= 0 though slower than light in energy transport. nonlocal EPR correlations are explained by retrocausal advanced confirmation destiny waves in the Feynman zig zag (term coined by O Costa de Beauregard). On Jun 22, 2014, at 8:09 PM, Paul Zielinski wrote: And he said almost the same things in 1924: http://www.oe.eclipse.co.uk/nom/aether.htm On 6/22/2014 7:46 PM, art wagner wrote: The Einstein Ether (1920): http://www.bonus.manualsforall.com/Educational/Albert-Einstein/Albert Einstein - Ether And The Theory Of Relativity.PDF

 

"Let us illustrate the problem of signalling with the assistance of the ubiquitous experimenters Alice and Bob. We will place Alice and Bob at some distance apart, and between them there will be a source emitting pairs of entangled particles. To avoid relativistic complications we will assume that Alice, Bob, their detectors, and the particle source are all mutually at rest in an inertial frame (the ‘lab’ frame). Pair after pair of particles are emitted by the source and detected by Alice and Bob's apparatuses, who record their results. Alice and Bob are free to alter the angle of their detectors with each run of the apparatus.

 
What each experimenter will record is an apparently random sequence of ups and downs, like the results of an honest coin repeatedly tossed; and yet, when they compare results afterward, they will note that certain correlations, generally sinusoidal in form, stand between their results. For example, if the particles are spin-1/2 fermions, and if Alice and Bob are measuring spin in a particular direction, then the correlation between their results will be -cos@ where @ is the angle between Alice and Bob's detectors. Sinusoidal correlations like these readily violate mathematical inequalities such as those defined by Bell (1964).  Itamar Pitowsky (1994) showed that the Bell Inequalities are examples of “conditions of possible experience” first written down by George Boole; these are consistency conditions between measurement results on the assumption that the results of one measurement and the way it is carried out does not influence the measurement of the other particle at the time of measurement. This means that the particular sequence of results that Alice and Bob get at their respective detectors could not have been encoded in the particles at the source; for some relative angles their results are too well correlated or anti-correlated for them to be due to local causes built into both particles when they were emitted” Kent Peacock "The No-Signalling Theorems: A Nitpicking Distinction” 
 
Here is the setup
 
Bob is closer to the pair source S than Alice.
 
B — S—————A
 
Bob does not change his settings.
 
Alice at the last moment changes her settings in delayed choice fashion AFTER Bob’s particles in the entangled pairs has already been detected.
 
This is done in pulse fashion so that there is a good statistical sample of particles in each pulse.
 
Each setting (ai,b) b-fixed has random outputs 1,0 for each individual detection.
 
Using the statistical rules of orthodox quantum theory Alice and Bob compare their raw data after the experiment is over and from the fraction of coincidences in each pulse, Bob can infer the sequence of settings a1, a2, …. aN for N pulses, which is the encoded message.
 
It is obvious, since Bob did nothing at all,  that Alice’s free will choices of settings a1, a2, …. aN for N pulses  (which is the message) is the active future cause of the back-from-the-future coincidences, unless you want a paranoid conspiracy theory.
 

 

Now of course this is not Valentini’s “signal nonlocality” that is a larger theory violating orthodox quantum theory the way general relativity violates special relativity globally though not locally. With Valentini’s PQM extension of QM Bob can know in advance what Alice will choose even before she chooses it without doing the hindsight correlation analysis. However, any attempt by Bob to cause a paradox will fail either for reasons given by Thorne and Novikov or by David Deutsch.
  1. It seems to me that Bohmian beables are obviously required.
    1) fact is that we live in a classical macroscopic world where the fundamental observable is Maxwell's local classical electromagnetic field tensor F
    obeying in Cartan form notation
    F = dA
    dF = 0
    d*F = *J
    * = Hodge dual
    All our information about other fermion matter fields comes indirectly via F and also A if you include the Bohm-Aharonov quantum effect.
    Therefore, the basic classical observable is the F electromagnetic field.
    As Basil Hiley explains this beable F is an infinite-dimensional field configuration on a spacelike or lightlike surface in which each spacetime event is a "dimension". It has a super Q and photons are not localized like massive fermions are. If, instead of the continuum, we use a voxelated 3D + 1 world crystal lattice (Kleinert) then the hologram principle tells us that the lattice spacing is not the Planck length Lp, but rather it is L where
    L^3 = Lp^2A^1/2
    A = area - entropy of the horizon screen Seth pixelated computer
    The number of BITs in J. A. Wheeler's
    IT FROM BIT
    is N = A/4Lp^2 = A^3/2/L^3 ~ 10^52/10^-70 ~ 10^122 in our actual causal diamond pictured here
    Showing Apast and A future with 3D volumes of both retarded history and advanced destiny influence on the 3D lightlike slices. I think Susskind's student Raphael Buosso at UC Berkeley has worked this all out mathematically though perhaps not with the advanced Wheeler-Feynman -Cramer-Aharonov effect?
    Note the change in Heisenberg's uncertainty principle which according to Susskind et-al is
    &x ~ h/&p + Lp^2&p/h
    However, I think it may really be
    &x ~ h/&p + L^2&p/h
    Note that
    Lp = 10^-35 meters
    A^1/2 = 10^26 meters
    L^3 ~ 10^-7010^26 = 10^-44 meters^3
    L ~ 10^-15 meter ~ 1 fermi ~ 1 Gev
    for the voxel unit cell of the hologram image world crystal lattice
    Hawking's black body radiation is a horizon surface effect
    T ~ A^-1/2
    I predict a second high temperature horizon thickness Hawking radiation of temperature
    T' ~ (LcA^1/2)^-1/2
    (LcA^1/2) is the proper length quantum thickness of the Horizon as a "stretched membrane" (Kip Thorne)
    Therefore, the stretched membrane is a very efficient Carnot limited heat engine with
    (Work outpu/Heat input ) < 1 - (Lc/A^1'2)^1/2 ---> 0 as A^1/2 ---> Lp (Planck black hole)
    Lc is the formal UV cutoff
    Now there may be a spectrum of such cutoff's. Sinziana Paduroiu's astrophysicist colleagues in Paris suggest that Susskind's cut off of Lp corresponds to Hawking gravity wave black body radiation.
    Note that for precision cosmology (LpA^1/2)^1/2 ~ (10^-3510^26)^1/2 ~ (10^-9)^1/2 ~ 10^-3 meters ~ 10^11 Hz corresponding to the observed dark energy density. However, it is easily shown that this must come from our future horizon as a retro-causal back-from-the-future "destiny" (Aharonov) effect.
    Search Results
    Back From the Future | DiscoverMagazine.com
    discovermagazine.com/2010/apr/01-back-from-the-future
    Aug 26, 2010 – A series of quantum experiments shows that measurements performed in the future can influence the present. Does that mean the universe has ...
    On Jun 26, 2013, at 12:18 PM, Ruth Kastner <rekastner@hotmail.com> wrote:
    Thanks Jack, I'll look at these. But to the extent that you have to adduce a Bohmian picture to support your claim, I can't buy it, because I don't think the 'beable' approach is correct. I don't agree that there are 'beables'. RK
    Back From the Future | DiscoverMagazine.com
    discovermagazine.com
    A series of quantum experiments shows that measurements performed in the future can influence the present. Does that mean the universe has a destiny—and the laws of physics pull us inexorably toward our prewritten fate?

  1.  
  2. See Your 2012 Year in Review
    Look back at your 20 biggest moments from the past year.
  3. Activity
    Recent
    Jack is now friends with Josh Everett and 18 other people.
    · Comment
  4. Discussion with Ruth Elinor Kastner Physicist at University of Maryland and Menas Kafatos, Dean of School of Physical Science, Chapman University & MIT Physics Professor's book on me and my associates that got 2012 physics book of the year award. My name appears ~ 600 times in the Hippies Saved Physics book reviewed in NY TIMES, WALL STREET JOURNAL, NATURE, SCIENTIFIC AMERICAN, PHYSICS TODAY, AMERICAN SCIENTIST ...
    Like · · Share
    • Jack Sarfatti They do not require, it i.e. retrocausality is not necessary, it is sufficient. Invoking retrocausality does not contradict any orthodox quantum experiments. Retrocausality is a true Godel undecidable proposition within the too limited rules of the orthodox quantum theory game.
    • Destiny Matters Congratulations!!!
    • Gareth Lee Meredith And not to mention, Wheeler delayed choice experiment is experimental evidence for retrocausality.
    • Jack Sarfatti On Dec 20, 2012, at 11:01 PM, Ruth Elinor Kastner wrote:

      Jack, you'll need to say which argument you're talking about. If it's the claim in the abstract from the arxiv preprint I mentioned (http://arxiv.org/abs/1206.6224), yes, all the results
      are nic
      ely predicted by ordinary qm and do not require 2-state formalism as 'the only 'reasonable resolution' as claimed by Aharonov et al in that abstract. In fact the alleged 'contradictions' that they claim need 'resolution' are spurious; under a standard qm analysis, which I've already provided, there are no special problems or contradictions that need 'resolving' by recourse to a different formulation.

      Jack: As I said. Yakir & Co only have an argument of sufficiency of the retrocausal interpretation in which psi* is a post-selected advanced destiny influence and psi is the pre-selected retarded history influence colliding as it were in the intermediate weak measurement. Since orthodox quantum theory is degenerate in this regard, i.e. admits a meta-Hilbert space of Godel undecidable Bohmian "informal languages" or interpretations, e.g.

      1) Copenhagen epistemological

      2) Bohm ontological

      3) Parallel Worlds (Tegmark Level 3)

      4) Cramer Transactional

      5) London-Wigner consciousness reduction --> Penrose Orch OR

      etc.

      Only strong signal nonlocality in Antony Valentini's sense can settle the issue.

      Libet --> Radin --> Bierman --> Bem

      I claim is clear evidence for the breakdown of orthodox quantum theory in living matter.

      Quantum theory is only limiting case of a more general post-quantum theory as special relativity was for general relativity.

      Ruth: So they are taking something that is perfectly sensible under standard qm and making it seem strange and obscure to create an apparent need for their formulation. There are no special problems with these experimental phenomena under a standard qm analysis. It all boils down to steering of quantum systems (by way of weak measurements) into tilted error states more likely to give certain 'strong' outcomes. So of course the strong outcomes are more likely to have come from the weakly measured states which lean toward those outcomes. It's just the shoe factory analogy: If Alice is known to have a high rate of defective shoe production on Saturdays (because she partied too hard the night before), if Bob gets a Saturday shipment, he's going to find that more of those shoes are defective. That doesn't indicate that Bob's identification of a particular defective shoe forces that shoe to retroactively have been (probably) made on a Saturday the week before. It just means that it's more likely to have been made on a Saturday. This is all ordinary statistical inference,
      no different conceptually from my inferring that in the past you interacted with your computer because I got an email from you. My getting that email did not retroactively influence you to have done something in the past.

      Neither do any of the fancy experiments referred to recently in the popular press require a 'back from the future' explanation.

      Jack: They do not require, it i.e. retrocausality is not necessary, it is sufficient. Invoking retrocausality does not contradict any orthodox quantum experiments. Retrocausality is a true Godel undecidable proposition within the too limited rules of the orthodox quantum theory game.

      Ruth: Rather than the 'back from the future' explanation being more 'elegant' or 'simpler' as 2-state vector proponents claim, it is tendentious and misleading since it's based on taking results perfectly consistent with standard qm and trying to argue that they require something beyond standard qm. They don't. Remember the shoe factory.

      Now if someone gets reliable statistically significant deviation from the Born Rule, that's a completely different matter: in that case, both standard qm and the 2-state formulation fail.

      Jack: I think the history-destiny picture naturally generalizes to include signal nonlocality - that's what John Cramer claims in his back from the future experiment and in Chapter 16 of Frontiers of Propulsion Science.

      ________________________________________
    • Jack Sarfatti From: jack [sarfatti@pacbell.net]
      Sent: Friday, December 21, 2012 1:16 AM
      To: Kafatos, Menas

      That's what I have been saying. However Ruth seems to think her argument refutes Yakir's It doesn't Difference in logic between a sufficient explanation and a
      ...See More
      phys.org
      Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) have, for the first time, demonstrated in an experiment that the decision whether two particl...
 
Back From The Future Post-Quantum Theory
  • Laurel Weiner likes this.
  • Jack Sarfatti I think Yakir only claims that real retrocausality is a sufficient consistent interpretation of orthodox quantum theory, but not a necessary condition. My claim, consistent with Antony Valentini's papers, is that the experimental presponse data from Libet -> Radin -> Bierman -> Bem is a violation of orthodox quantum theory's no-entanglement signaling "theorems". Therefore, that proves with a high degree of Baysean confidence in my opinion, that real retrocausality is a fact of nature and quantum theorists need to expand their boundaries if they are to remain intellectually honest.

    On Dec 20, 2012, at 4:32 PM, Ruth Elinor Kastner <rkastner@umd.edu> wrote:

    Ok Jack -- the only thing I question is holding up these experiments in the popular press as evidence of retrocausality -- they aren't.

    RK
    ________________________________________
    From: jack [sarfatti@pacbell.net]
    Sent: Thursday, December 20, 2012 7:25 PM
    To: Ruth Elinor Kastner

    Subject: Re: I missed this. You?

    Sent from my iPad

    On Dec 20, 2012, at 3:11 PM, Ruth Elinor Kastner wrote:

    The presponse data is a separate issue from what's going on in the experiments referred to by CL.

    Agreed

    The retrocausal phenomenon is moot in orthodox qm
    Yakir agrees with that
    The presponse data is a violation of it
    So orthodox qm is not interesting for retrocausality
    What Yakir shows is that there is no contradiction
    It's like lifting a degeneracy in the meta Hilbert space of parallel qm interpretations

    I don't rule out that humans might be able to get around QM statistics and that there may be other physics out there, but my point is just that
    _these experiments do not contain that new physics_. These experiments are perfectly consistent with standard QM without explicit retrocausality.
    Therefore, of course they are also consistent with TI as an interpretation of standard QM. Yes in TI there are advanced states but these are sub-empirical; i.e.
    their existence cannot be revealed/confirmed by experiment- -- at least not by these experiments.

    On the other hand, Valentini's work predicts deviations from standard QM (i.e. Born Rule).

    That's my point.

    Only if there is deviation from the Born Rule is there truly
    new quantum physics in this sense. In terms of the Transactional Interpretation, deviation from the Born Rule would mean that there might be some way to directly influence _which_ transaction is actualized from a set of possible ones.

    Cramer say that in ch 16
    I prove it using entangled Glauber states

    Best
    Ruth
    ________________________________________
    From: jack [sarfatti@pacbell.net]
    Sent: Thursday, December 20, 2012 5:59 PM
    To: Ruth Elinor Kastner

    Subject: Re: I missed this. You?

    Right I still have not had time to respond properly in depth
    But your critique noted
    Crucial test is presponse evidence u ignore
    Also Russ Targ's CIA RV SRI report
    John Cramer disagrees w you in ch 16 of exotic propulsion book
    I mean your not addressing issue that qm is limit of more general theory with entanglement signaling.

    Sent from my iPad

    On Dec 20, 2012, at 2:48 PM, Ruth Elinor Kastner wrote:

    I've seen a discussion elsewhere about these kinds of experiments. As soon as you detect a single particle (say Alice's), a one-particle Alice state is necessarily detected
    and actualized on Alice's side, even if nobody 'looked' at it (i.e. even if there is still epistemic uncertainty about what state was actualized) and that
    collapses the pair (both Alice's and Bob's particles) in that particular run into a particular state . Then the subsequent measurements you perform on Bob's particle
    will reflect the statistics of the state that was created via the detection of Alice's particle.

    In the experiments involving a superposition of the interferometer mirror in a 'which-slit' and 'both slits' configuration, detection of Alice's particle projects that combined system of Alice + Bob + IFM mirror into a particular state, and then detection of the mirror in a particular state further projects Bob's particle into a particular state corresponding to the mirror's detection, so of course Bob's particle is later detected with statistics reflecting those earlier detections.

    No explicit retrocausality is necessarily present in these kinds of experiments. The claims are usually overstated based on a conflation of any given individual run with the statistical analysis of sets of runs.

    RK
    ________________________________________
    From: jack [sarfatti@pacbell.net]
    Sent: Thursday, December 20, 2012 1:37 PM
    To: Levit, Creon (ARC-P)

    Subject: Re: I missed this. You?

    I know about this and I think kim already has it posted on Stardrive

    Sent from my iPad

    On Dec 20, 2012, at 10:26 AM, "Levit, Creon (ARC-P)" wrote:

    http://phys.org/news/2012-04-quantum-physics-mimics-spooky-action.html#nRlv
    phys.org
    Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Op...See More
[1208.0034] Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements
arxiv.org
Like · · Share
  • John Collier Not surprising. James Leggett's work on the theory of weak measurements more or less implies this. I wrote in 1997 in a review of a book on hte direction of time: The chapters by physicists James Leggett and Phil Stamp deal with the distinction between...See More
  • Jack Sarfatti So does Antony Valentini's but in a different way.
  • Leonardo Varesi Yes, but do you think that in quantum gravity theories applied for example to blacks holes, this fact would be a serious problem to be reassessed?Isn't it?
  • Jack Sarfatti Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements
    Lee A. Rozema, Ardavan Darabi, Dylan H. Mahler, Alex Hayat, Yasaman Soudagar, Aephraim M. Steinberg
    (Submitted on 31 Jul 2012 (v1), last revised 15 Aug 2012 (this version, v2))

    While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system, often referred to as "Heisenberg's Uncertainty Principle," Heisenberg originally formulated his ideas in terms of a relationship between the precision of a measurement and the disturbance it must create. Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg's "measurement-disturbance relationship", using weak measurements to characterize a quantum system before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003. Its results have broad implications for the foundations of quantum mechanics and for practical issues in quantum mechanics.
  • Jack Sarfatti Compare to: Subquantum Information and Computation

    Antony Valentini
    (Submitted on 11 Mar 2002 (v1), last revised 12 Apr 2002 (this version, v2))
    It is argued that immense physical resources - for nonlocal communication, espionage, and exponentially-fast computation - are hidden from us by quantum noise, and that this noise is not fundamental but merely a property of an equilibrium state in which the universe happens to be at the present time. It is suggested that 'non-quantum' or nonequilibrium matter might exist today in the form of relic particles from the early universe. We describe how such matter could be detected and put to practical use. Nonequilibrium matter could be used to send instantaneous signals, to violate the uncertainty principle, to distinguish non-orthogonal quantum states without disturbing them, to eavesdrop on quantum key distribution, and to outpace quantum computation (solving NP-complete problems in polynomial time).
    Comments: 10 pages, Latex, no figures. To appear in 'Proceedings of the Second Winter Institute on Foundations of Quantum Theory and Quantum Optics: Quantum Information Processing', ed. R. Ghosh (Indian Academy of Science, Bangalore, 2002). Second version: shortened at editor's request; extra material on outpacing quantum computation (solving NP-complete problems in polynomial time)
    Subjects: Quantum Physics (quant-ph)
    Journal reference: Pramana - J. Phys. 59 (2002) 269-277
    DOI: 10.1007/s12043-002-0117-1
    Report number: Imperial/TP/1-02/15
    Cite as: arXiv:quant-ph/0203049
    (or arXiv:quant-ph/0203049v2 for this version)




It will take me time to carefully read & ponder all this. Meantime I hope others do as well. Of course, signal nonlocality in Valentini's sense settles the issue of whether retrocausation is not only real, but is controllable of practical use as suggested also in the presponse brain-mind experiments and the CIA SRI RV experiments. That goes beyond the domain of validity that even Yakir has considered. I agree with Yakir's logic below that I personally find impeccable. The new physics of course is in the Popper falsification of his last sentence: Causal loops are avoided by this anticipation remaining encrypted until the final outcomes enable to decipher it.
Now this is the point that many still don't get. With Tony Valentini's "signal nonlocality" there are Novikov causal loops in which Bob's future strong measurement final outcome is decrypted by Alice BEFORE Bob even knows what choice he will make.

This is proved by CIA/DIA experiments (assuming of course they are correct)

Harold E. Puthoff - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Harold_E._Puthoff
Harold E. Puthoff (born June 20, 1936) is an American physicist who, earlier in his ... H. E. Puthoff, CIA-Initiated Remote Viewing At Stanford Research Institute, ...
Background - Ventures in Austin - Scientology - EarthTech
Remote viewing - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Remote_viewing
In 1972, Puthoff tested remote viewer Ingo Swann at SRI, and the experiment led to a visit from two employees of the CIA's Directorate of Science and ...
History - Scientific studies and claims - Recent research
You've visited this page 3 times. Last visit: 12/4/12
CIA-Initiated Remote Viewing At Stanford Research Institute
www.biomindsuperpowers.com/Pages/CIA-InitiatedRV.html
CIA-Initiated Remote Viewing At Stanford Research Institute. by H. E. Puthoff, Ph. D. Institute for Advanced Studies at Austin 4030 Braker Lane W., #300. Austin ...
You've visited this page 3 times. Last visit: 12/5/12
On Dec 5, 2012, at 1:47 PM, Ruth Elinor Kastner <rkastner@umd.edu> wrote:

This recent preprint from Aharonov et al claim that the "only reasonable" way to understand these is by invoking retrocausality and make the unsupported claim that the weak outcomes 'anticipate the experimenter's future choice'. This is the paper I analyze in the previous drafts I attached:

"Can a Future Choice Affect a Past Measurement's Outcome?
Yakir Aharonov, Eliahu Cohen, Doron Grossman, Avshalom C. Elitzur
(Submitted on 27 Jun 2012 (v1), last revised 18 Sep 2012 (this version, v5))

An EPR experiment is studied where each particle undergoes a few weak measurements of different spin-orientations, whose outcomes are individually recorded. Then the particle undergoes a strong measurement along a spin orientation freely chosen at the last moment. Bell-inequality violation is expected between the two strong measurements. At the same time, agreement is expected between all same-spin measurements, whether weak or strong. A contradiction thereby ensues: i) A weak measurement cannot determine the outcome of a successive strong one; ii) Bell's theorem forbids spin values to exist prior to the final choice of the spin-orientation to be measured; and iii) Indeed no disentanglement is inflicted by the weak measurements; yet iv) The weak measurements' outcome agrees with those of the strong ones. The only reasonable resolution seems to be that of the Two-State-Vector Formalism, namely that the weak measurement's outcomes anticipate the experimenter's future choice, even before the experimenter themselves knows what their choice is going to be. Causal loops are avoided by this anticipation remaining encrypted until the final outcomes enable to decipher it. "  > end quote from Aharonov etal

Ruth
________________________________________
From: JACK SARFATTI [sarfatti@pacbell.net]
Sent: Wednesday, December 05, 2012 4:28 PM
To: Ruth Elinor Kastner

Subject: Re: [ExoticPhysics] Paul Werbos on back from the future physics (Wheeler-Feynman-Hoyle-Narlikar-Aharonov-Cramer …)

Yakir does say that his results can be understood in the orthodox way. However, different ways of looking at the problem are asymmetric in terms of extending the orthodox theory to a larger domain of validity as special relativity was extended to general relativity where special relativity is only true locally but not globally in the presence of real (tensor curvature) gravity fields.

Similarly, Yakir's "Wheeler-Feynman" approach, Cramer's approach, Bohm's approach all lend themselves naturally to entanglement signal nonlocality violating orthodox quantum theory extensions of the the latter in natural ways.

This is in contrast to, for example, Asher Peres's interpretation in which such an extension is not even thinkable.



On Dec 5, 2012, at 1:11 PM, Ruth Elinor Kastnerwrote:


Attached is my quantitative analysis of allegedly wondrous experiments allegedly requiring retrocausation and/or claiming to show loophole in Bell's thm.  My analysis (attached) shows that no retrocausation is necessary and there is no such loophole in Bell's thm. The experiments have no new physics and are all straightforwardly accounted for by standard QM.

Ruth
________________________________________
From: JACK SARFATTI [adastra1@me.com]
Sent: Wednesday, December 05, 2012 3:37 PM
To: Jack Sarfatti's Workshop in Advanced Physics

Subject: Re: [ExoticPhysics] Paul Werbos on back from the future physics (Wheeler-Feynman-Hoyle-Narlikar-Aharonov-Cramer …)

good question Z

I think Ruth is wrong, but it will take me time to properly refute her argument

On Dec 5, 2012, at 12:29 PM, Paul Zielinski wrote:

Then what do they show?

On 12/5/2012 12:27 PM, Ruth Elinor Kastner wrote:

They show nothing of the sort. This is all hype.

Ruth
________________________________________
From: JACK SARFATTI [sarfatti@pacbell.net<mailto:sarfatti@pacbell.net>]
Sent: Wednesday, December 05, 2012 3:25 PM
To: Exotic Physics
Subject: Paul Werbos on back from the future physics (Wheeler-Feynman-Hoyle-Narlikar-Aharonov-Cramer …)

*   Home<http://discovermagazine.com/><http://discovermagazine.com/>
*   »
*   April<http://discovermagazine.com/2010/apr><http://discovermagazine.com/2010/apr>
*   »
*   Back From the Future

FROM THE APRIL 2010 ISSUE
Back From the Future
A series of quantum experiments shows that measurements performed in the future can influence the present. Does that mean the universe has a destiny—and the laws of physics pull us inexorably toward our prewritten fate?
http://discovermagazine.com/2010/apr/01-back-from-the-future#.UL-msaWe1ho

On Dec 5, 2012, at 5:17 AM, Paul Werbos <paul.werbos@verizon.net<mailto:paul.werbos@verizon.net><mailto:paul.werbos@verizon.net><mailto:paul.werbos@verizon.net>> wrote:

The idea that causality might go backwards in time is certainly older than any of us.

Agreed. But that should not be confounded with the much stronger condition spelled out in Antony Valentini's paper here, which is what I am talking about.
Subquantum Information and Computation
Antony Valentini<http://arxiv.org/find/quant-ph/1/au:+Valentini_A/0/1/0/all/0/1><http://arxiv.org/find/quant-ph/1/au:+Valentini_A/0/1/0/all/0/1>
(Submitted on 11 Mar 2002 (v1<http://arxiv.org/abs/quant-ph/0203049v1><http://arxiv.org/abs/quant-ph/0203049v1>), last revised 12 Apr 2002 (this version, v2))
It is argued that immense physical resources - for nonlocal communication, espionage, and exponentially-fast computation - are hidden from us by quantum noise, and that this noise is not fundamental but merely a property of an equilibrium state in which the universe happens to be at the present time. It is suggested that 'non-quantum' or nonequilibrium matter might exist today in the form of relic particles from the early universe. We describe how such matter could be detected and put to practical use. Nonequilibrium matter could be used to send instantaneous signals, to violate the uncertainty principle, to distinguish non-orthogonal quantum states without disturbing them, to eavesdrop on quantum key distribution, and to outpace quantum computation (solving NP-complete problems in polynomial time).
Comments:       10 pages, Latex, no figures. To appear in 'Proceedings of the Second Winter Institute on Foundations of Quantum Theory and Quantum Optics: Quantum Information Processing', ed. R. Ghosh (Indian Academy of Science, Bangalore, 2002). Second version: shortened at editor's request; extra material on outpacing quantum computation (solving NP-complete problems in polynomial time)
Subjects:       Quantum Physics (quant-ph)
Journal reference:      Pramana - J. Phys. 59 (2002) 269-277
DOI:    10.1007/s12043-002-0117-1<http://arxiv.org/ct?url=http://dx.doi.org/10%2E1007/s12043-002-0117-1&v=35ec265c><http://arxiv.org/ct?url=http://dx.doi.org/10%2E1007/s12043-002-0117-1&v=35ec265c>
Report number:  Imperial/TP/1-02/15
Cite as:        arXiv:quant-ph/0203049<http://arxiv.org/abs/quant-ph/0203049><http://arxiv.org/abs/quant-ph/0203049>
http://arxiv.org/abs/quant-ph/0203049


PW: Certainly we all know about HG Wells time machine, and about the concept of prophecy
of the future.

JS Agreed.

PW: And certainly Einstein himself was quite blunt about the claim that time is just
another dimension, and should not be treated otherwise. There is a sense in which
one might call special relativity itself a species of backwards-time physics (BTP).
Indeed, by playing with the definition of BTP (as many played with the definition of
BP and even tried to play with BTT), one could justify all kinds of statements about the history.

JS: OK

PW: For the backwards time interpretation of quantum mechanics, I had a special advantage.
I went to graduate school with one of the authors of the CHSH theorem and one
of the first two CHSH experiment, which is popularly called "Bell's Theorem."
(Though JS Bell himself uses the proper term CHSH.) It would be hard for anyone to
publish a paper explaining the paradoxical nature of quantum mechanics, and the CHSH
experiment, before the experiment came out and the theorem was widely disseminated.
Still, Von Neumann did look into these issues, and he did conclude that our conventional assumptions about "causality"
seem to be the basic problem in carrying through Einstein's program. (I cite the source in the IJTP paper.)

But that is just a starting point. If people get too deep into personality issues, the logical starting point will be lost,
and likewise all that it could lead to.

JS: OK

PW: The IJTP paper tries to get us back to empirical reality in this kind of issue. For example, the discussion
of Bell's Theorem experiments with imperfect polarizers could itself get somebody a Nobel Prize, if properly followed up on
by someone motivated to aim for a Nobel Prize. (I have too many other goals on my plate to
give that one any serious attention.) Most people try to forget the inconvenient fact that the first Bell's Theorem
experiment contradicted BOTH "local causal hidden variable theory" AND quantum mechanics in its present form.
The simple algebra in the IJTP paper basically offers a way to explain that, and nail it down.

JS: I need to study your argument as well as Ruth Kastner's rejection of Yakir Aharonov's back from the future History-Destiny double state vector interpretation.

PW: As for Aharonov... well, I do hope he can help with the cultural revolution we need to make.
Help and allies are badly needed, to get this beyond what I put into my own notebooks, and to get the experiments we need
as well. I think he has grown a lot in recent years, and he has done a great thing to try to move the mai nstream
out of its lethargy by epsilon... but...

.. In 2000, when I visited Brian Josephson in Cambridge, I found a very recent book from Cambridge University Press edited by Savitt,
with the current establishment work on "the arrow of time." Of the papers there, only the one by Huw Price really fit
the modern vision of BTP as **I** define it. Aharonov's paper had WORDS in the spirit of BTP, but the
mathematical formalism he presented simply is not consistent with BTP. More recently, he has sometimes sounded closer to
what I previously wrote, in his discussion of "preselection" -- but even so he often insists that it is just a matter of interpretation, that it's still the same theory of physics. How can we get different predictions and different technology if it's just a matter of interpretation and not a different theory?

JS: That's what Valentini's papers deal with and extension of quantum theory to include signal nonlocality "passion at a distance" violating orthodox quantum theory that is simply a limiting case of the more general "post-quantum theory". Weinberg and Stapp already published such models. Weinberg's is incomplete neglecting spontaneous symmetry breakdown in ground states of complex systems. Also my idea

http://www.tcm.phy.cam.ac.uk/~mdt26/pilot_waves.html - two slides in Lecture 8 on my back-action theory that implies Valentini's signal nonlocality

http://journalofcosmology.com/SarfattiConsciousness.pdf

And Brian Josephsons (& Pallikari) "Biological Utilization of Nonlocality"
http://www.tcm.phy.cam.ac.uk/~bdj10/

================

PW: I had a good personal relation for years with Karl Pribram, until other people in our lives and the general pressure of time pulled us in different directions. I still remember one time when he looked very perplexed and said: "<http://www.tcm.phy.cam.ac.uk/~bdj10/================PW:IhadagoodpersonalrelationforyearswithKarlPribram,untilotherpeopleinourlivesandthegeneralpressureoftimepulledusindifferentdirections.Istillrememberonetimewhenhelookedveryperplexedandsaid:>Paul, I have already been marginalized to a huge extent
by being too far out in left field for most of the establishment to accept. But you are way the hell to the left of ME... and also way to
the right at the same time. Neither group, the left nor the right, will be able to accept that." So... with technology and the mind,
I see real-world possibilities rather beyond what those other folks you cite do. But with what we know in physics today..
I see more promise for now in trying to simplify and unify what physics knows
than in exercising creative imagination in a way which is not so grounded in experience and experiment (as the superstring people do,
making the medieval epicycle guys look mild by comparison, mor elike angels on the head of a pin).

Concretely, what I see right now is the possibility that Einstein's original goals are still doable. In the IJTP paper, I spoke
of a many world BTP AND an Einsteinian BTP. By now, I see more concretely how to fulfill that theoretical goal,
with a few specific Lagrangians for a classical PDE, which generates quantum stuff as an emergent statistical outcome,
so long as one does the statistics correctly WITHOUT imposing the exogenous assumption of classical time-forward statistics.
Yea even a neoclassical version of the standard model of physics, without a need for renormalization...

But it's a long story, and today I must move on to read 180 new proposals to NSF...
That time of year...

Best of luck,

 Paul


_______________________________________________


<Weak measurement correlations with strong measurements.docx><specific calculation in reply to EC and AE.docx>

_______________________________________________
ExoticPhysics mailing list
ExoticPhysics@mail.softcafe.net
http://mail.softcafe.net/cgi-bin/mailman/listinfo/exoticphysics

http://philsci-archive.pitt.edu/868/

Only signal nonlocality violating orthodox QM will resolve this.
The data from Libet -> Radin -> Bierman -> Bem
& Puthoff & Targ (SRI)
are evidence for signal nonlocality entanglement signaling (e.g. Antony Valentini's papers) as the essential signature of consciousness in my opinion. Nano-tech devices emulating microtubules et-al will result in a conscious AI robot in my opinion.

Henry Stapp argued that

1) statistical predictions of orthodox QM( i.e. Born probability interpretation aka sub-quantal HV thermal equilibrium as in A. Valentini's papers)

2) counter-factual definiteness

3) locality

are mutually incompatible.

If Henry is correct, then you can have 3) and 1) by violating 2).

Indeed that is Many-Worlds in sense of Everett. It is what Joy Christian, David Deutsch and Murray Gell-Mann seem to believe.

In contrast the ABL paper assumes 1) & 2) and violates 3) which is the dominant view and is also my own.

Only strong entanglement signaling violating current no-go theorems will settle this once and for all.

I claim that the brain data cited above is evidence for the latter.

ibc.chapman.edu
08/18/12 Celebrating Aharanov: Nicolas Gisin: “Quantum nonlocality based on finite-speed influences leads to signaling” (Javascript is required to view Mediasite content)

"It sounds impossible, indeed as though it is violating one of science's most cherished principles – causality – but the researchers say that the rules of the quantum world conspire to preserve causality by "hiding" the influence of future choices until those choices have actually been made."

The latest Aharonov paper on back from the future weak measurements in relation to final strong measurements has the Catch 22 that precognition is not possible. However, that contradicts experiments so his theory must not be complete. Aharonov assumes signal locality and that is what observations challenge.

On Aug 9, 2012, at 9:18 PM, JACK SARFATTI <sarfatti@pacbell.net> wrote:

http://physicsworld.com/cws/article/news/2012/aug/03/can-the-future-affect-the-past


Feeling The Future: Is Precognition Possible? | Wired Science ...
www.wired.com/.../2010/.../feeling-the-future-is-precognition-possibl...Nov 15, 2010 – Most science papers don't begin with a description of psi, those "anomalous processes of information or energy transfer" that have no material ...
[PDF] Feeling the Future: Experimental Evidence for Anomalous - Daryl Bem
dbem.ws/FeelingFuture.pdfFile Format: PDF/Adobe Acrobat - Quick View
Feeling the Future: Experimental Evidence for. Anomalous Retroactive Influences on Cognition and Affect. Daryl J. Bem. Cornell University. The term psi denotes ...
You've visited this page 5 times. Last visit: 2/5/12
Daryl Bem's Home Page
dbem.ws/Feb 24, 2011 – Feeling the Future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social ...
You've visited this page 5 times. Last visit: 2/23/12
Feeling The Future: CONUNDRUM
feelingthefuture.org/Read the original Feeling The Future. Psychologist Daryl Bem publishes a study on ESP, and academia (predictably) goes bananas. 2. SCIENCE FICTION: Can we feel the future through psi? Don't rule it out | Ed Halliwell ...
www.guardian.co.uk › Comment is free › Cif beliefJan 25, 2011 – Ed Halliwell: A study suggesting the existence of precognition should be carefully scrutinised – not dismissed out of hand.
[PDF] The Emotional Oracle Effect
business.illinois.edu/ba/seminars/2010/pham_paper2.pdfFile Format: PDF/Adobe Acrobat - Quick View
by AT STEPHEN - Related articles
Feeling the Future: The Emotional Oracle Effect. MICHEL ... feelings are better able to predict the outcomes of future events than individuals with lower trust ...
Feeling the Future: Experimental Evidence for Anomalous ...
rationalwiki.org/.../Feeling_the_Future:_Experimental_Evidence_for...Mar 15, 2012 – "Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect" is a paper submitted to and ...
[PDF] Feeling the Future - Columbia University
www.columbia.edu/~tdp4/Pham-Lee-Stephen-JCR2012.pdfFile Format: PDF/Adobe Acrobat - Quick View
by MT PHAM - Cited by 2 - Related articles
Jan 12, 2012 – Feeling the Future: The Emotional Oracle Effect. Author(s): ... in their feelings can predict the outcomes of future events better than individuals ...
Columbia Ideas at Work : Feature : Feeling+the+Future
https://www4.gsb.columbia.edu/ideasatwork/.../Feeling+the+FutureFeb 28, 2012 – Feeling the Future. Placing greater trust in one's feelings can help us forecast future events. Topics : Marketing · Organizations · Strategy ...
Daryl Bem - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Daryl_Bem In 2011, Bem published the article "Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect" in the Journal of ...

I explain the low value of the cosmological constant without a multiverse, without eternal chaotic inflation, without a landscape, without the need for large numbers like 10^500 and higher etc. The cosmological constant is simply advanced Wheeler-Feynman blackbody radiation from our detector-dependent future horizon that is completely redshifted down to virtual photons when it reaches us - or Type 1a supernovae in our past light cone because the horizons are infinite redshift surfaces in both directions of time. Also it explains the Arrow of Time.

hc/Lp^4 at the future horizon relative to the detector ---> hc/ALp^2 at the past detector is trivial in the retrocausal loop model that also fits Aharonov's destiny state vector.
On Aug 6, 2012, at 11:03 AM, JACK SARFATTI <adastra1@mac.com> wrote:

Fractal-Flows and Time's Arrow
Leonard Susskind
(Submitted on 29 Mar 2012 (v1), last revised 7 Apr 2012 (this version, v2))
This is the written version of a lecture at the KITP workshop on Bits, Branes, and Black Holes. In it I describe work with D. Harlow, S. Shenker, D. Stanford which explains how the tree-like structure of eternal inflation, together with the existence of terminal vacua, leads to an arrow-of-time. Conformal symmetry of the dS/CFT type is inconsistent with an arrow-of-time and must be broken. The presence in the landscape of terminal vacua leads to a new kind of attractor called a fractal-flow, which both breaks conformal symmetry, and creates a directional time-asymmetry. This can be seen from both the local or causal-patch viewpoint, and also from the global or multiversal viewpoint. The resulting picture is consistent with the view recently expressed by Bousso.


On Aug 6, 2012, at 10:54 AM, art wagner <wagnerart@hotmail.com> wrote:

http://xxx.lanl.gov/abs/1203.6440

Yes, this is very relevant to my current conversation with Dan Smith.