Jack Sarfatti Subject: ER = EPR
Susskind & Maldecena here show that traversable wormholes and entanglement signal nonlocality are two sides of the same coin. I anticipated all this in 1973-4.
"Spacetime locality is one of the cornerstones in our present understanding of physics. By locality we mean the impossibility of sending signals faster than the speed of light. Locality appears to be challenged both by quantum mechanics and by general relativity. Quantum mechanics gives rise to Einstein Podolsky Rosen (EPR) correlations [1], while general relativity allows solutions to the equations of motion that connect far away regions through relatively short “wormholes” or Einstein Rosen bridges [2]. It has long been understood that these two effects do not give rise to real violations of locality. One cannot use EPR correlations to send information faster than the speed of light. Similarly, Einstein Rosen bridges do not allow us to send a signal from one asymptotic region to the other, at least when suitable positive energy conditions are obeyed [3, 4, 5]. This is sometimes stated as saying that Lorentzian wormholes are not traversable1.
Here we will note that these two effects are actually connected. We argue that the Einstein Rosen bridge between two black holes is created by EPR-like correlations between the microstates of the two black holes. This is based on previous observations in [6, 10]. We call this the ER = EPR relation. In other words, the ER bridge is a special kind of EPR correlation in which the EPR correlated quantum systems have a weakly coupled Einstein gravity description. It is also special because the combined state is just one particular entangled state out of many possibilities. We note that black hole pair creation in a magnetic field “naturally” produces a pair of black holes in this state. It is very tempting to think that any EPR correlated system is connected by some sort of ER bridge, although in general the bridge may be a highly quantum object that is yet to be independently defined. Indeed, we speculate that even the simple singlet state of two spins is connected by a (very quantum) bridge of this type.
In this article we explain the reasons for expecting such a connection. We also explore some of the implications of this point of view for the black hole information problem, in its AMPS(S)[11, 12] form. See [13, 14, 15] for some earlier work and [12] for a more complete set of references. See [16] for a proposal to describe interiors that is similar to what we are saying here2."
Cool horizons for entangled black holes
Juan Maldacena1 and Leonard Susskind2
1 Institute for Advanced Study, Princeton, NJ 08540, USA
2 Stanford Institute for Theoretical Physics and Department of Physics,
Stanford University, Stanford, CA 94305-4060, USA
Jack Sarfatti Horizons, ‘t Hooft - Susskind Holographic Conjecture & Cosmic 10Hz EM Signal
We are outside observer-independent black hole horizons so that the inverse square law applies to them. In contrast, we are inside our observer-dependent cosmological horizons at the exact center where the Hawking radiation from it converges. Curiously, using the asymptotic area ~ 1052 meter2 of our future dark energy de Sitter horizon, and L ~ 10-35 meters for indirect Hawking-Unruh horizon thickness gravity wave emission corresponds very roughly (back-of-the-envelope) to a peak blackbody wavelength ~ 1013-17.5 ~ (1/3) x 10-4 meters ~ (3 x 1012 Hz)-1 with Stefan-Boltzmann HFGW energy density ~ hc/LP2A ~ 10-34 108 107010-52 ~ 10-8 Joules/meter3 ~ 10-28 gm/cc ~ critical density for k = 0 flat universe ~ dark energy density. Remember, these are black body gravity waves not electromagnetic waves. However, dark energy comes from virtual bosons with w = -1 negative quantum pressure causing the expansion of 3D space to accelerate rather than slow down. Blackbody radiation, in contrast, has w = +1/3 positive quantum pressure causing gravity universal attraction rather than anti-gravity universal repulsion. However, the Unruh effect’s Bogoliubov transformation says that the LIF observer sees virtual bosons with w = -1 whilst the physically coincident LNIF observer sees real blackbody bosons with w = +1/3. We are only concerned with the distant observer far away from the horizon, which limits to a LIF for both the Schwarzschild black hole and the de Sitter cosmological toy model metrics. So this is a clue as to what may really be going on. It is not a rigorous argument.
Even more problematical is that we, most likely, must use classical causality in the sense of where the past and future light cones intersect both the past particle and future event cosmological horizons of the detector. One can see that the area of our past particle horizon is smaller than the area of our future event horizon at the corresponding light cone intersections. The ball park numerical agreement with the actually observed dark energy density from Type 1a supernovae anomalous redshift data in our past light cones will only work if the gravity waves are advanced Wheeler-Feynman waves propagating back to us along our future light cone. This is reminiscent of Yakir Aharonov’s “destiny” post-selected quantum waves that interfere with pre-selected “history waves to form the “weak measurements” in the intermediate time. John Cramer’s “transactional interpretation” also uses advanced quantum waves. Of course, quantum waves for subluminal massive particles travel outside the classical light cones. Furthermore, the hologram conjecture is that a conformal 2D + 1 anyonic fractional quantum statistical heat resistant topological computer quantum field theory on both our past and future cosmological horizons provide a 3D + 1 quantum gravity geometrodynamics in the interior bulk of this causal diamond observable piece of a “Level 1” multiverse in the sense of Max Tegmark’s classification.[i] Thus, it is plausible that the dark energy density is an advanced Wheeler-Feynman hologram influence and that we live in a kind of virtual “weak measurement” computed reality. Fred Hoyle anticipated this picture back in 1983 in his book “The Intelligent Universe.” On the other hand, the hologram conjecture predicts that the Planck area pixels on our past and future cosmological quantum computing horizon screens have Fermi-scale voxels. This would mean a strong short-range Abdus Salam f-gravity “quantum foam” which may be disproved by the high-energy gamma ray experiments looking for violations of Lorentz invariance in deviations from the special relativity mass shell constraint. If so, that would disprove the hologram conjecture.
The above is for advanced black body gravity waves from our future cosmological horizon. What about advanced black body electromagnetic waves from the electron-positron plasma confined within a Compton wavelength of our future cosmological horizon? Now the peak wavelength is ~ 10-12/2 1013 ~ 107 meters ~ (10Hz)-1 in the same range as our EEG human brain waves relevant to our waking consciousness and other vital brain activity.
[i] Strictly speaking, the AdS/CFT conjecture has only been “proved” for negative cosmological constant in 4D+1, not for our actual positive cosmological constant in 3D+1. However, the general idea is intuitively appealing and we shall simply assume it is correct as a working hypothesis and wait for the mathematical types to catch up with us.
Jack Sarfatti On the other hand, in Feynman’s propagator diagram theory particles moving backward in time have negative energy. Wheeler and Ciufolini wrote:
“In the Hawking process, two newly created particles exchange energy, one acquiring negative energy –E and the other positive energy E. Slightly outside the horizon of the black hole, the negative energy photon has enough time to cross the horizon. Therefore, the negative energy particle flies inward from the horizon; the positive energy particle flies off to a distance. The energy it carries with it comes in the last analysis from the black hole itself. The massive object is no longer quite so massive because it has had to pay the debt of energy brought in by the negative energy member of the newly created pair of particles.” P. 68
Again we are outside black hole horizons, but are inside our observer-dependent cosmological horizons both past and future. Therefore, the advanced w = + 1/3 Wheeler-Feynman Hawking black body radiation from our cosmological future de Sitter event horizon will be exotic, i.e. negative energy density, causing universal anti-gravity repulsion.
http://en.wikipedia.org/wiki/Hawking_radiation
above is for Hawking's surface gravity modes - low energy.
This is ~ 10^-28 Watts per solar mass isotropic over 4pi solid angle
i.e. P ~ 1/A
A is area-entropy of the black hole horizon
For the new quantum thickness radiation we are now predicting.
P' ~ 1/(LA^1/2)
P'/P = [1/(LA^1/2)]/[1/A] = A/(LA^1/2) = A^1/2/L
P' ~ (A^1/2/L)10^-28 Watts per solar mass
Let r = distance of black hole from Earth (neglecting intervening curvature for simplicity)
The power flux density at Earth is then
P'/4pir^2 ~ (A^1/2/4pir^2L)10^-28 Watts per solar mass per unit area
There is a spectrum of L's.
If L = Lp that is from virtual Planck scale black holes of Wheeler's quantum foam getting energy from the gravity near field emitting spin 2 gravitons. For example, I get ~ 10^-6 gravitons of ~ 10^21 Hz per square meter per second hitting Earth from the 4 million solar mass black hole at the center of our Milky Way. Too small to measure most likely even though it's much larger than the flux from Hawking's surface modes.
On the other hand if L = h/mc ~ 10^-11 cm these are virtual electron positron pairs getting energy from the gravity near field and the charges that escape the horizon accelerate emitting photons.
Similarly L ~ 10^-13 cm will be radiation from virtual nucleon pairs etc.
However, clearly the HFGW mechanism at L = Lp dominates.
1) John Cramer describes Woodward’s core thesis. “Let’s consider the problem of reactionless propulsion first. Woodward extended the work of Sciama in investigating the origins of inertia in the framework of general relativity by consideration of time-dependent effects that occur when energy is in flow while an object is being accelerated. The result is surprising. It predicts large time-dependent variations in inertia, the tendency of matter to resist acceleration.” This is the local tensor proper acceleration of the rest-massive test particle pushed off a timelike geodesic of the local curvature tensor field caused by real not fictitious forces. The fictitious forces appear to act on the test particle, but in reality they don’t. They describe real forces on the measuring device observing the test particle. The Levi-Civita connection in the mathematics of general relativity describes the real forces on the observing measuring apparatus not the test object being measured. “The inertial transient effects predicted by the Sciama-Woodward calculations are unusual … in that they have G in the denominator, and dividing by a small number produces a large result.” John Cramer definitely thinks that James Woodward’s inertial transient data is real “convincing evidence,” although it’s only “tens of micronewton level thrusts delivered to a precision torsion balance.” It’s important to understand that “thrusts” are not weightless warp drives free of time dilation relative to the clock-synchronized external observer left behind. Supposing best-case scenario, that Woodward’s effect is real and can be scaled up by many powers of ten. It’s still no good to get to the stars because of time dilation and the blueshifts of stuff in the way of the front of the starship. It would be good for airplanes and spacecraft on near solar system missions – if it really worked.
1) . I intuited the connection between the Einstein-Rosen (ER) wormhole and Einstein-Podolsky-Rosen (EPR) quantum entanglement back in 1973 when I was with Abdus Salam at the International Centre of Theoretical Physics in Trieste, Italy. This idea was published in the wacky book “Space-Time and Beyond” (Dutton, 1975) described by MIT physics historian David Kaiser in his book “How the Hippies Saved Physics.” Lenny Susskind, who I worked with at Cornell 1963-4, rediscovered this ER = EPR connection in the black hole “firewall” paradox. Lenny envisions a multi-mouthed wormhole network connecting the Hawking radiation particles their entangled twins behind the evaporating event horizon. “each escaping particle remains connected to the black hole through a wormhole” Dennis Overbye, Einstein and the Black Hole, New York Times August 13, 2013. The no-signaling theorem corresponds to the wormhole pinching off before a light speed limited signal can pass through one mouth to the other. Now we know that traversable wormhole stargates are possible using amplified anti-gravity dark energy. This corresponds to signal-nonlocality in post-quantum theory violating orthodox quantum theory.
1) Localizing global symmetries requires the addition of compensating gauge connections in a fiber bundle picture of the universe. Indeed, the original global symmetry group is a smaller subgroup of the local symmetry group. The gauge connections define parallel transport of tensor/spinor fields. They correspond to the interactions between the several kinds of charges of the above symmetries. I shall go into more details of this elsewhere. Indeed localizing the above spacetime symmetries corresponds to generalizations of Einstein’s General Relativity as a local gauge theory.[i] For example, localizing the space and time global translational symmetries means that the Lie group transformations at different events (places and times) in the universe are independent of each other. If one believes in the classical special relativity postulate of locality that there are no faster-than-light actions at a distance, then the transformations must certainly be independent of each other between pairs of spacelike separated events that cannot be connected by a light signal. However, the local gauge principle is much stronger, because it applies to pairs of events that can be connected not only by a light signal, but also by slower-than-light timelike signals. This poses a paradox when we add quantum entanglement. Aspect’s experiment and others since then, show that faster-than-light influences do in fact exist in the conditional probabilities (aka correlations) connecting observed eigenvalues of quantum observable operators independently chosen by Alice and Bob when spacelike separated. I shall return to this in more detail elsewhere. However, the no entanglement-signaling postulate is thought by many mainstream theoretical physicists to define orthodox quantum theory. It’s believed that its violation would also violate the Second Law of Thermodynamics. Note that the entanglement signal need not be faster-than-light over a spacelike separation between sender and receiver. It could be lightlike or timelike separated as well. Indeed it can even be retrocausal with the message sent back-from-the-future. John Archibald Wheeler’s “delayed choice experiment” is actually consistent with orthodox quantum theory’s no-signaling premise. The point is, that one cannot decode the message encoded in the pattern of entanglement until one has a classical signal key that only propagates forward in time. What one sees before the classical key arrives and a correlation analysis is computed is only local random white noise. However, data on precognitive remote viewing as well as brain presponse data suggests that no-entanglement signaling is only true for dead matter. Nobel Prize physicist, Brian Josephson first published on this. I have also suggested it using Bohm’s ontological interpretation (Lecture 8 of Michael Towler’s Cambridge University Lectures on Bohm’s Pilot Wave). Antony Valentini has further developed this idea in several papers. Post-quantum “signal nonlocality” dispenses with the need to wait for the light-speed limited retarded signal key propagating from past to future. Local non-random noise will be seen in violation of the S-Matrix unitarity “conservation of information” postulate of G. ‘t Hooft, L. Susskind et-al. Indeed the distinguishable non-orthogonality of entangled Glauber macro-quantum coherent states seems to be the way to get signal nonlocality. This gets us to the “Black Hole War” between Susskind and Hawking about information loss down evaporating black holes. It seems that Hawking caved in too fast to Susskind back in Dublin in 2004. I intuited the connection between the Einstein-Rosen (ER) wormhole and Einstein-Podolsky-Rosen (EPR) quantum entanglement back in 1973 when I was with Abdus Salam at the International Centre of Theoretical Physics in Trieste, Italy. This idea was published in the wacky book “Space-Time and Beyond” (Dutton, 1975) described by MIT physics historian David Kaiser in his book “How the Hippies Saved Physics.” Lenny Susskind, who I worked with at Cornell 1963-4, rediscovered this ER = EPR connection in the black hole “firewall” paradox.
[i] Localizing the four space and time translations corresponds to Einstein’s general coordinate transformations that are now gauge transformations defining an equivalence class of physically identical representations of the same curvature tensor field. However, the compensating gauge connection there corresponds to torsion fields not curvature fields. The curvature field corresponds to localizing the three space-space rotations and the three space-time Lorentz boost rotations together. Einstein’s General Relativity in final form (1916) has zero torsion with non-zero curvature. However, T.W.B. Kibble from Imperial College, London in 1961 showed how to get the Einstein-Cartan torsion + curvature extension of Einstein’s 1916 curvature-only model by localizing the full 10-parameter Poincare symmetry Lie group of Einstein’s 1905 Special Relativity. The natural geometric objects to use are the four Cartan tetrads that correspond to Local Inertial Frame (LIF) detector/observers that are not rotating about their Centers of Mass (COM) that are on weightless zero g-force timelike geodesics. Zero torsion is then imposed as an ad-hoc constraint to regain Einstein’s 1916 model as a limiting case. The ten parameter Poincare Lie group is subgroup of the fifteen parameter conformal group that adds four constant proper acceleration hyperbolic Wolfgang Rindler horizon boosts and one dilation scale transformation that corresponds to Herman Weyl’s original failed attempt to unify gravity with electromagnetism. The spinor Dirac square roots of the conformal group correspond to Roger Penrose’s “twistors.”