Text Size

Even if you don't know it by name, everyone is familiar with Newton's third law, which states that for every action, there is an equal and opposite reaction. This idea can be seen in many everyday situations, such as when walking, where a person's foot pushes against the ground, and the ground pushes back with an equal and opposite force. Newton's third law is also essential for understanding and developing automobiles, airplanes, rockets, boats, and many other technologies.

Even though it is one of the fundamental laws of physics, Newton's third law can be violated in certain nonequilibrium (out-of-balance) situations. When two objects or particles violate the third law, they are said to have nonreciprocal interactions. Violations can occur when the environment becomes involved in the interaction between the two particles in some way, such as when an environment moves with respect to the two particles. (Of course, Newton's law still holds for the complete "particles-plus-environment" system.)

Although there have been numerous experiments on particles with nonreciprocal interactions, not as much is known about what's happening on the microscopic level—the —of these systems.

In a new paper published in Physical Review X, Alexei Ivlev, et al., have investigated the statistical mechanics of different types of nonreciprocal interactions and discovered some surprising results—such as that extreme temperature gradients can be generated on the particle scale.

To read more, click here.
Category: News
indian porn sexnxxx.cc xvideos Amateur Porn video porno amatoriali filmeporno.top lupoporno film porno gratuit porno mature xnxx film porno gratuit
bisexuel gay porno gay porno देसी सेक्स एचडी पॉर्न ऊपर ऊपर से चुदाई Големи цици