Text Size

Carbon nanotubes are extremely lightweight, electrically highly conductive, and more stable than steel. Due to their unique properties, they are ideal for numerous applications, including ultra-lightweight batteries, high-performance plastics and medical implants. However, to date, it has been difficult for science and industry to transfer the extraordinary characteristics at the nano-scale into functional industrial applications. The carbon nanotubes either cannot be combined adequately with other materials, or they lose their beneficial properties once combined. Scientists from the Functional Nanomaterials working group at Kiel University (CAU) and the University of Trento have now developed an alternative method, with which the tiny tubes can be combined with other materials so that they retain their characteristic properties. The research results have now been published in Nature Communications.

"Although carbon nanotubes are flexible
likefibre strands, they are also very sensitive to changes," explained Professor Rainer Adelung, head of the Functional Nanomaterials working group at the CAU. "With previous attempts to chemically connect them with other materials, their molecular structure also changed. This, however, made their properties deteriorate—mostly drastically."

In contrast, the approach of the research team from Kiel and Trento is based on a simple wet chemical infiltration process. The CNTs are mixed with water and dripped into an extremely porous ceramic material made of zinc oxide, which absorbs the liquid like a sponge. The dripped thread-like CNTs attach themselves to the ceramic
scaffolding, and automatically form a stable layer together. The ceramic scaffolding is coated with nanotubes. This has fascinating effects, both for the scaffolding as well as for the coating of nanotubes.

To read more, click here.
Category: Science