Text Size

Two independent teams of scientists, including one from the University of Maryland (UMD) and the National Institute of Standards and Technology (NIST), have used more than 50 interacting atomic qubits to mimic magnetic quantum matter, blowing past the complexity of previous demonstrations. The results appear in this week's issue of Nature.

As the basis for its quantum simulation, the UMD-NIST team deploys up to 53 individual ytterbium ions—charged atoms trapped in place by gold-coated and razor-sharp electrodes. A complementary design by Harvard and MIT researchers uses 51 uncharged rubidium atoms confined by an array of laser beams. With so many qubits these quantum simulators are on the cusp of exploring physics that is unreachable by even the fastest modern supercomputers.
Andadding even more qubits is just a matter of lassoing more atoms into the mix.

"Each ion qubit is a stable atomic clock that can be perfectly replicated," says UMD team lead Christopher Monroe, who is also the co-founder and chief scientist at the startup IonQ Inc. "They are effectively wired together with external laser beams. This means that the same device can be reprogrammed and reconfigured, from the outside, to adapt to any type of quantum simulation or future quantum computer application that comes up." Monroe has been one of the early pioneers in quantum computing and his research group's quantum simulator is part of a blueprint for a general-purpose quantum computer.

To read more, click here.
Category: Science