Text Size
Facebook Twitter More...

Light, which travels at a speed of 300,000 km/sec in a vacuum, can be slowed down and even stopped completely by methods that involve trapping the light inside crystals or ultracold clouds of atoms. Now in a new study, researchers have theoretically demonstrated a new way to bring light to a standstill: they show that light stops at "exceptional points," which are points at which two light modes come together and coalesce, in waveguides that have a certain kind of symmetry.

Unlike most other methods that are used to stop light, the new method can be tuned to work with a wide range of frequencies and bandwidths, which may offer an important advantage for future slow-light applications.

The researchers, Tamar Goldzak and Nimrod Moiseyev at the Technion – Israel Institute of Technology, along with Alexei A. Mailybaev at the Instituto de Matemática Pura e Aplicada (IMPA) in Rio de Janeiro, have published a paper on stopping light at exceptional points in a recent issue of Physical Review Letters.



Read more at: https://phys.org/news/2018-01-exceptional.html#jCp

Light, which travels at a speed of 300,000 km/sec in a vacuum, can be slowed down and even stopped completely by methods that involve trapping the light inside crystals or ultracold clouds of atoms. Now in a new study, researchers have theoretically demonstrated a new way to bring light to a standstill: they show that light stops at "exceptional points," which are points at which two light modes come together and coalesce, in waveguides that have a certain kind of symmetry.

Unlike most other methods that are used to stop light, the new method can be tuned to work with a wide range of frequencies and bandwidths, which may offer an important advantage for future slow-light applications.

The researchers, Tamar Goldzak and Nimrod Moiseyev at the Technion – Israel Institute of Technology, along with Alexei A. Mailybaev at the Instituto de Matemática Pura e Aplicada (IMPA) in Rio de Janeiro, have published a paper on stopping light at exceptional points in a recent issue of Physical Review Letters.

To read more, click here.

Category: Science