Text Size

The controversial idea that our universe is just a random bubble in an endless, frothing multiverse arises logically from nature’s most innocuous-seeming feature: empty space. Specifically, the seed of the multiverse hypothesis is the inexplicably tiny amount of energy infused in empty space — energy known as the vacuum energy, dark energy or the cosmological constant. Each cubic meter of empty space contains only enough of this energy to light a lightbulb for 11-trillionths of a second. “The bone in our throat,” as the Nobel laureate Steven Weinberg once put it, is that the vacuum ought to be at least a trillion trillion trillion trillion trillion times more energetic, because of all the matter and force fields coursing through it. Somehow the effects of all these fields on the vacuum almost equalize, producing placid stillness. Why is empty space so empty?

While we don’t know the answer to this question — the infamous “cosmological constant problem” — the extreme vacuity of our vacuum appears necessary for our existence. In a universe imbued with even slightly more of this gravitationally repulsive energy, space would expand too quickly for structures like galaxies, planets or people to form. This fine-tuned situation suggests that there might be a huge number of universes, all with different doses of vacuum energy, and that we happen to inhabit an extraordinarily low-energy universe because we couldn’t possibly find ourselves anywhere else.

To read more, click here.

Category: Science