Text Size
Facebook Twitter More...

Among the chief complaints for smartphone, laptop and other battery-operated electronics users is that the battery life is too short and—in some cases—that the devices generate heat. Now, a group of physicists led by Deepak K. Singh, associate professor of physics and astronomy at the University of Missouri, has developed a device material that can address both issues. The team has applied for a patent for a magnetic material that employs a unique structure—a "honeycomb" lattice that exhibits distinctive electronic properties.

"Semiconductor diodes and amplifiers, which often are made of silicon or germanium, are key elements in modern electronic devices," said Singh, who also serves as the principal investigator of the Magnetism and Superconductivity Research Laboratory at MU. "A diode normally conducts current and voltage through the device along only one biasing direction, but when the voltage is reversed, the current stops. This switching process costs significant energy due to dissipation, or the depletion of the power source, thus affecting battery life. By substituting the semiconductor with a magnetic system, we believed we could create an energetically effective device that consumes much less power with enhanced functionalities."

To read more, click here.

Category: Science