Text Size
Facebook Twitter More...

In the textbook explanation for how information is encoded in the brain, neurons fire a rapid burst of electrical signals in response to inputs from the senses or other stimulation. The brain responds to a light turning on in a dark room with the short bursts of nerve impulses, called spikes. Each close grouping of spikes can be compared to a digital bit, the binary off-or-on code used by computers.

Neuroscientists have long known, though, about other forms of electrical activity present in the brain. In particular, rhythmic voltage fluctuations in and around neurons—oscillations that occur at the same 60-cycle-per-second frequency as AC current in the U.S.—have caught the field’s attention. These gamma waves encode information by changing a signal’s amplitude, frequency or phase (relative position of one wave to another)—and the rhythmic voltage surges influence the timing of spikes.

Heated debate has arisen in recent years as to whether these analog signals, akin to the ones used to broadcast AM or FM radio, may play a role in sorting, filtering and organizing the information flows required for cognitive processes. They may be instrumental in perceiving sensory inputs, focusing attention, making and recalling memories and coupling various cognitive processes into one coherent scene.

It is thought that populations of neurons that oscillate at gamma frequencies may unite the neural activity in the same way the violin section of an orchestra is coupled together in time and rhythm with the percussion section to create symphonic music. When gamma waves oscillate in resonance, “you get very rich repertoires of behaviors,” says Wolf Singer, a neuroscientist at the Ernst Strüngmann Institute in Frankfurt, Germany, who researches gamma waves. Just as your car’s dashboard will vibrate in sync with the motor vibrating at a resonant frequency, so too can separate populations of neurons couple in resonance.

To read more, click here.

Category: Science