Text Size
Facebook Twitter More...

The photoelectric effect refers to the emission of electrons from a metal that is injected with light—a phenomenon that was discovered over 100 years ago and explained by Einstein. Today, the effect is the basis for a powerful experimental method known as angle-resolved photoemission spectroscopy (ARPES). This technique uses light to take a “picture” of a material’s electronic energy bands, the structure of which dictates many material properties. Researchers have steadily increased the resolution of these electron pictures by various means, including employing lasers as the light source. Now, using laser-based ARPES, Anna Tamai of the University of Geneva and colleagues provide an unprecedented test of a theory for materials in which electron correlations are strong [1]. The researchers studied the unconventional superconductor, Sr2RuO4, and determined that correlations enhance a parameter known as spin-orbit coupling (SOC) by a factor of 2—in agreement with the theoretical prediction. Their accurate measurement of SOC may also help physicists resolve a puzzle surrounding the superconducting state of Sr2RuO4.


To read more, click here.
Category: Science