Text Size
Facebook Twitter More...

Christopher Carr couldn’t see the wood he was supposed to be walking on. The ad-hoc boardwalk running through this part of British Columbia had sunk beneath a quicksand-like mud. He proceeded slowly, each step a piece of guesswork.

The path, through a super-salty lake near a town called Clinton, had a prize at the end, though: spots where the MIT astrobiologist, hopefully, could find evidence of strange life. In environments like this, which may resemble long-gone lakes on Mars, the salt preserves fingerprints of biology like it preserves bacon. Astrobiologists like Carr—and Georgetown’s Alexandra Pontefract, who’s in charge of these field trips—have been able to find evidence of microbial communities that consume sulfate and don’t need oxygen. 

This trip, in late 2018, wasn’t Carr’s first outdoor adventure. He’s trekked to a polar desert, old mines that seep acid, and an active volcano.  Pontefract traveled back to the hypersaline lakes in interior British Columbia this September to gather some more samples—ramming sediment corers into the salty lake bottoms, setting up gas samplers, and toting samples back to the lab for analysis.

Collecting squirmers—and signs of their ancestors—is key to Carr’s work, in particular to another program called SETG, the Search for Extraterrestrial Genomes. The research team, based at MIT, centers on the idea that life on Earth and life on Mars (if it exists) might be related. Carr and his group are developing autonomous tools that could someday travel to Mars, collect samples, extract their genetic material, and sequence it—no humans required.

To read more, click here.
Category: Science