Text Size
Facebook Twitter More...

We know how to use the “rules” of quantum physics to build lasers, microchips, and nuclear power plants, but when students question the rules themselves, the best answer we can give is often, “The world just happens to be that way.” Yet why are individual outcomes in quantum measurements random? What is the origin of the Schrödinger equation? In a paper [1] appearing in Physical Review A, Giulio Chiribella at the Perimeter Institute in Waterloo, Canada, and Giacomo Mauro D’Ariano and Paolo Perinotti at the University of Pavia, Italy, offer a framework in which to answer these penetrating questions. They show that by making six fundamental assumptions about how information is processed, they can derive quantum theory. (Strictly speaking, their derivation only applies to systems that can be constructed from a finite number of quantum states, such as spin.) In this sense, Chiribella et al.’s work is in the spirit of John Wheeler’s belief that one obtains “it from bit,” in other words, that our account of the universe is constructed from bits of information, and the rules on how that information can be obtained determine the “meaning” of what we call particles and fields.

To read the rest of the article, click here.

"The problem with this paper is that it assumes as axioms ideas that are violated by actual data such as Daryl Bem's "Feelng the future" where the causality postulate that future measurements cannot influence past measurements (i.e. retrocausality) is questionable to say the least." - Jack Sarfatti
Category: Science