Text Size


Facebook Twitter More...

Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems

Authors: Raymond Y. Chiao

(Submitted on 5 Mar 2010 (v1), last revised 8 Mar 2010 (this version, v2))

Abstract: Freely falling point-like objects converge towards the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum object such as a hydrogen atom prepared in a high principal-quantum-number stretch state, i.e., a circular Rydberg atom, is predicted to fall more slowly that a classical point-like object, when both objects are dropped from the same height from above the Earth. This indicates that, apart from "quantum jumps," the atom exhibits a kind of "quantum incompressibility" during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is "quantum incompressible." The ions of the ionic lattice of the superconductor, however, are not "quantum incompressible," since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large repulsive Coulomb force that opposes the convergence caused by the tidal, attractive gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. This experiment would demonstrate the existence of a novel coupling between gravity and electricity via macroscopically coherent quantum matter.

For the .PDF of the paper, click here.

Category: Physics