Pin It

When soup is heated, it starts to boil. When time and space are heated, an expanding universe can emerge, without requiring anything like a "Big Bang". This phase transition between a boring empty space and an expanding universe containing mass has now been mathematically described by a research team at the Vienna University of Technology, together with colleagues from Harvard, the MIT and Edinburgh. The idea behind this result is a remarkable connection between quantum field theory and Einstein's theory of relativity.

Everybody knows of the transitions between liquid, solid and gaseous phases. But also time and space can undergo a phase transition, as the physicists Steven Hawking and Don Page pointed out in 1983. They calculated that empty space can turn into a black hole at a specific temperature.

Can a similar process create a whole expanding universe such as ours? Daniel Grumiller from the Vienna University of Technology looked into this, together with colleagues from the USA and Great Britain. Their calculations show that there is indeed a critical temperature at which an empty, flat spacetime turns into an expanding universe with mass. "The empty spacetime starts to boil, little bubbles form, one of which expands and eventually takes up all of spacetime", explains Grumiller.

To read more, click here.