Pin It

In certain nanomaterials, electrons are able to race through custom-built roadways just one atom wide. To achieve excellent efficiency, these one-dimensional paths must be paved with absolute perfection—a single errant atom can stop racing electrons in their tracks or even launch it backwards. Unfortunately, such imperfections are inevitable.

Now, a pair of scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Ludwig Maximilian University in Munich have proposed the first solution to such subatomic stoppage: a novel way to create a more robust electron wave by binding together the electron's direction of movement and its spin. The trick, as described in a paper published November 16 in Physical Review Letters and featured as an Editor's Selection, is to exploit lacing the electron racetrack. The theory could drive advances in nanoscale engineering for data- and energy-storage technologies.

"One-dimensional materials can only be very good conductors if they are defect-free, but nothing in this world is perfect," said Brookhaven physicist Alexei Tsvelik, one of two authors on the paper. "Our theory, the first of its kind, lays out a way to protect electron waves and optimize these materials."

To read more, click here.