Pin It

Hall thrusters (HTs) are used in earth-orbiting satellites, and also show promise to propel robotic spacecraft long distances, such as from Earth to Mars. The propellant in a HT, usually xenon, is accelerated by an electric field which strips electrons from neutral xenon atoms, creating a plasma. Plasma ejected from the exhaust end of the thruster can deliver great speeds, typically around 70,000 mph.

Cylindrical shaped Hall thrusters (CHTs) lend themselves to miniaturization and have a smaller surface-to-volume ratio that prevents erosion of the thruster channel. Investigators at the Harbin Institute of Technology in China have developed a new inlet design for CHTs that significantly increases thrust. Simulations and experimental tests of the new design are reported this week in the journal Physics of Plasmas, by AIP Publishing.

To read more, click here.