Pin It

In physical sciences, certain quantities appear as integer multiples of fundamental and indivisible elements. This quantization of physical quantities, which is at the heart of our description of nature, made its way through the centuries, as evidenced by the antique concept of the atom. Importantly, the discovery of quantized quantities has often been associated with a revolution in our understanding and appreciation of nature's law, a striking example being the quantization of light in terms of photons, which led to our contemporary (quantum-mechanical) description of the microscopic world.

An international team led by Prof. Nathan Goldman, Faculty of Science, Université libre de Bruxelles, predicts a novel form of quantization law, which involves a distinct type of physical observable: the heating rate of a quantum system upon external shaking. In order to understand this concept, let us first consider a simpler analogous picture: When an ice cube is placed into a micro-wave oven, the latter excites the water molecules, hence leading to a progressive melting of the ice; during this heating process, the number of molecules that form the ice decreases in time, a process which can be quantified by a heating rate. In the present article, the authors demonstrate how, under specific circumstances, such heating rates must satisfy an elegant and precise quantization law. Specifically, the authors explain that this phenomenon takes place when a physical system, which initially forms an exotic state of matter (a topological phase), is heated up in a controlled manner; upon heating, particles are ejected from the topological phase (in direct analogy with the melting of ice described above) and the corresponding heating rate is shown to satisfy the aforementioned quantization law.



Read more at: https://phys.org/news/2017-08-quantum-universal-probe-exotic-states.html#jCp

In physical sciences, certain quantities appear as integer multiples of fundamental and indivisible elements. This quantization of physical quantities, which is at the heart of our description of nature, made its way through the centuries, as evidenced by the antique concept of the atom. Importantly, the discovery of quantized quantities has often been associated with aour contemporary (quantum-mechanical) description of the microscopic world.

An international team led by Prof. Nathan Goldman, Faculty of Science, Université
libre de Bruxelles, predicts a novel form of quantization law, which involves a distinct type of physical observable: the heating rate of a quantum system upon external shaking. In order to understand this concept, let us first consider a simpler analogous picture: When an ice cube is placed into a
micro-wave oven, the latter excites the water molecules, hence leading to a progressive melting of the ice; during this heating process, the number of molecules that form the ice decreases in time, a process which can be quantified by a heating rate. In the present article, the authors demonstrate how, under specific circumstances, such heating rates must satisfy an elegant and precise quantization law. Specifically, the authors explain that this phenomenon takes place when a physical system, which initially forms an exotic state of matter (a topological phase), is heated up in a controlled manner; upon heating, particles are ejected from the topological phase (in direct analogy with the melting of ice described above) and the corresponding heating rate is shown to satisfy the aforementioned quantization law.

To read more, click here.