Pin It

Despite the absence of a global Earth-like magnetic dipole, the Martian atmosphere is well protected from the effects of the solar wind on ion escape from the planet. New research shows this using measurements from the Swedish particle instrument ASPERA-3 on the Mars Express spacecraft. The results have recently been presented in a doctoral thesis by Robin Ramstad, Swedish Institute of Space Physics and Umeå University, Sweden.

 

Present-day Mars is a cold and dry planet with less than 1% of Earth's atmospheric pressure at the surface. However many geological features indicate the planet had an active hydrological cycle about 3-4 billion years ago. An active hydrological cycle would have required a warmer climate in the planet's early history and therefore a thicker atmosphere, one capable of creating a strong greenhouse effect.

 

A common hypothesis maintains that the solar wind over time has eroded the early Martian atmosphere, causing the greenhouse effect, and thus the hydrological cycle, to collapse. Unlike Earth, Mars has no global magnetic dipole, but the solar wind instead induces currents in the ionized upper atmosphere (the ionosphere), creating an induced magnetosphere.

 

"It has long been thought that this induced magnetosphere is insufficient to protect the Martian atmosphere," says Robin Ramstad. "However our measurements show something different."

To read more, click here.