Pin It

A team of UCLA electrical and computer engineers has created a physical artificial neural network -- a device modeled on how the human brain works -- that can analyze large volumes of data and identify objects at the actual speed of light. The device was created using a 3D printer at the UCLA Samueli School of Engineering.

Numerous devices in everyday life today use computerized cameras to identify objects -- think of automated teller machines that can "read" handwritten dollar amounts when you deposit a check, or internet search engines that can quickly match photos to other similar images in their databases. But those systems rely on a piece of equipment to image the object, first by "seeing" it with a camera or optical sensor, then processing what it sees into data, and finally using computing programs to figure out what it is.

The UCLA-developed device gets a head start. Called a "diffractive deep neural network," it uses the light bouncing from the object itself to identify that object in as little time as it would take for a computer to simply "see" the object. The UCLA device does not need advanced computing programs to process an image of the object and decide what the object is after its optical sensors pick it up. And no energy is consumed to run the device because it only uses diffraction of light.

New technologies based on the device could be used to speed up data-intensive tasks that involve sorting and identifying objects. For example, a driverless car using the technology could react instantaneously -- even faster than it does using current technology -- to a stop sign. With a device based on the UCLA system, the car would "read" the sign as soon as the light from the sign hits it, as opposed to having to "wait" for the car's camera to image the object and then use its computers to figure out what the object is.

To read more, click here.