Pin It

Summer is a great time for academics. Imagine: three full months off! Hit the beach. Tune that golf pitch. Hike the sierras. Go on a cruise. Watch soccer with the brazilenos (there’s been better years for that one). Catch the sunset by the Sydney opera house. Take a nap.

Think that’s outrageous? We have it even better. Not only do we get to travel the globe worry-free, but we prove theorems while doing it. For some of us summer is the only time of year when we manage to prove theorems. Ideas accumulate during the year, blossom during the conferences and workshops that mark the start of the summer, and hatch during the few weeks that many of us set aside as “quiet time” to finally “wrap things up”.

I recently had the pleasure of contributing to the general well-being of my academic colleagues by helping to co-organize (with Andrew Childs, Ignacio Cirac, and Umesh Vazirani) a 2-month long program on “Challenges in Quantum Computation” at the Simons Institute in Berkeley. In this post I report on the program and describe one of the highlights discussed during it: Mahadev’s very recent breakthrough on classical verification of quantum computation.

 

 

The Simons Institute has been in place on the UC Berkeley campus since the Fall of 2013, and in fact one of their first programs was on “Quantum Hamiltonian Complexity”, in Spring 2014 (see my account of one of the semester’s workshops here). Since then the institute has been hosting a pair of semester-long programs at a time, in all areas of theoretical computer science and neighboring fields. Our “summer cluster” had a slightly different flavor: shorter, smaller, it doubled up as the prelude to a full semester-long program scheduled for Spring 2020 (provisional title: The Quantum Wave in Computing, a title inspired from Umesh Vazirani’s recent tutorial at STOC’18 in Los Angeles) — (my interpretation of) the idea being that the ongoing surge in experimental capabilities supports a much broader overhaul of some of the central questions of computer science, from the more applied (such as, programming languages and compilers), to the most theoretical (such as, what complexity classes play the most central role).

To read more, click here.