Pin It

Our first glimpses into the physics that exist near the center of a black hole are being made possible using "loop quantum gravity" -- a theory that uses quantum mechanics to extend gravitational physics beyond Einstein's theory of general relativity. Loop quantum gravity, originated at Penn State and subsequently developed by a large number of scientists worldwide, is opening up a new paradigm in modern physics. The theory has emerged as a leading candidate to analyze extreme cosmological and astrophysical phenomena in parts of the universe, like black holes, where the equations of general relativity cease to be useful.

Previous work in loop quantum gravity that was highly influential in the field analyzed the quantum nature of the Big Bang, and now two new papers by Abhay Ashtekar and Javier Olmedo at Penn State and Parampreet Singh at Louisiana State University extend those results to black hole interiors. The papers appear as "Editors' suggestions" in the journals Physical Review Letters and Physical Review on December 10, 2018 and were also highlighted in a Viewpoint article in the journal Physics.

"The best theory of gravity that we have today is general relativity, but it has limitations," said Ashtekar, Evan Pugh Professor of Physics, holder of the Eberly Family Chair in Physics, and director of the Penn State Institute for Gravitation and the Cosmos. "For example, general relativity predicts that there are places in the universe where gravity becomes infinite and space-time simply ends. We refer to these places as 'singularities.' But even Einstein agreed that this limitation of general relativity results from the fact that it ignores quantum mechanics."

To read more, click here.