Pin It

The body of knowledge about the human brain is keeps growing, but many questions remain unanswered. Researchers have been using electrode arrays to record the brain's electrical activity for decades, mapping activity in different brain regions to understand what it looks like when everything is working, and what is happening when it is not. Until now, however, these arrays have only been able to detect activity over a certain frequency threshold. A new technology developed by the Graphene Flagship overcomes this technical limitation, unlocking the wealth of information found below 0.1 Hz, while paving the way for future brain-computer interfaces.

 

The new device was developed thanks to a collaboration between three Graphene Flagship Partners (IMB-CNM, ICN2 and ICFO) and adapted for brain recordings together with biomedical experts at IDIBAPS. This new technology moves away from electrodes and uses an innovative transistor-based architecture that amplifies the brain's signals in situ before transmitting them to a receiver. The use of graphene to build this new architecture means the resulting implant can support many more recording sites than a standard electrode array. It is slim and flexible enough to be used over large areas of the cortex without being rejected or interfering with normal brain function. The result is an unprecedented mapping of the low frequency brain activity known to carry crucial information about different events, such as the onset and progression of epileptic seizures and strokes.

To read more, click here.