Pin It


Exploiting semiconductor fabrication techniques, natural carriers of quantum information such as atoms, electrons, and photons can be embedded in scalable integrated devices. Integrated optics provides a versatile platform for large-scale quantum information processing and transceiving with photons. Scaling up the integrated devices for quantum applications requires highperformance single-photon generation and photonic qubit-qubit entangling operations. However, previous demonstrations report major challenges in producing multiple bright, pure and identical single-photons, and entangling multiple photonic qubits with high fidelity. Another notable challenge is to noiselessly interface multiphoton sources and multiqubit operators in a single device. Here we demonstrate on-chip genuine multipartite entanglement and quantum teleportation in silicon, by coherently controlling an integrated network of microresonator nonlinear single-photon sources and linear-optic multiqubit entangling circuits. The microresonators are engineered to locally enhance the nonlinearity, producing multiple frequencyuncorrelated and indistinguishable single-photons, without requiring any spectral filtering. The multiqubit states are processed in a programmable linear circuit facilitating Bell-projection and fusion operation in a measurement-based manner. We benchmark key functionalities, such as intra-/inter-chip teleportation of quantum states, and generation of four-photon Greenberger-HorneZeilinger entangled states. The production, control, and transceiving of states are all achieved in micrometer-scale silicon chips, fabricated by complementary metal-oxide-semiconductor processes. Our work lays the groundwork for scalable on-chip multiphoton technologies for quantum computing and communication.

To download the .PDF of the paper, click here.
free live sex indian sex cam live rivsexcam il miglior sito di webcam live sex chat with cam girls Regardez sexe shows en direct