Pin It

Researchers in Japan have developed a novel yet simple technique, called "diffusion driven layer-by-layer assembly," to construct graphene into porous three-dimensional (3D) structures for applications in devices such as batteries and supercapacitors. Their study was recently published in the journal Nature Communications.

Graphene is essentially an ultra-thin sheet of carbon and possesses exciting properties such as high mechanical stability and remarkable electrical conductivity. It has been touted as the next generation material that can conceivably revolutionize existing technology and energy sectors as we know them.

However, the thin structure of graphene also acts as a major obstacle for practical uses. When piecing together these tiny sheets into larger structures, the sheets easily stack with one another, resulting in a significant loss of unique material properties. While several strategies have been proposed to deal with this sticky issue, they are often costly, time consuming, and difficult to scale up.

To overcome this challenge, the researchers from the Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University borrowed a principle from polymer chemistry and developed it into a technique to assemble graphene into porous 3D architectures while preventing stacking between the sheets. By putting graphene oxide (an oxidized form of graphene) into contact with an oppositely charged polymer, the two components could form a stable composite layer, a process also known as "interfacial complexation."

To read more, click here.