Pin It

The stars in the night sky shine in myriad hues and brightnesses—piercing blues, clean whites, smoldering crimsons. Every star has a different mass, the basic characteristic that determines its size, lifespan, light output and temperature (which we discern as a particular color).

Yet when it comes to the existence of life, we know with certainty of only a single star—a toasty, yellow-whitish one, our Sun—that has permitted the rise of life on an encircling world. Astrobiologists are quite convinced, though, that life can also develop on planets orbiting smaller, cooler stars.

But what about stars with light more intense than our Sun's? A new paper, accepted for publication in the International Journal of Astrobiology, examines some of the fundamentals for life arising around a class of slightly heftier, hotter stars known as F-type main-sequence stars. (Stars in the main-sequence are in "full bloom," so to speak, and like our Sun, fuse hydrogen into helium in their cores.) Procyon, a bright white star and the brightest star in the constellation Canis Minor, is a well-known F-type main-sequence star. These bigger cousins to the Sun differ from our home star in many important ways when it comes to astrobiology. [The Strangest Alien Planets Ever (Gallery)]

To read more, click here.