Pin It

Carbon nanomaterials come in many different forms, such as diamond, aerogels, graphene, and soot. Sometimes carbon nanomaterials are even used as building blocks for making more complex nanomaterials. One recent example of this is nanotube forests that are grown to provide the raw material to make nanotube yarns that are woven into custom-made artificial muscles. In short, carbon nanomaterials are a versatile group that seem to provide endless opportunity for innovation.

In a new paper, physicist Pekka Koskinen at the University of Jyväskylä in Finland has proposed and modeled a new composite carbon nanostructure that consists of a rippled graphene sheet sandwiched between two flat graphene sheets, resulting in "graphene cardboard." The work is published in a recent issue of Applied Physics Letters.

"If realized experimentally, the structure could be used as a general-purpose platform at nanoscale, imitating the use of normal cardboard at macroscale," Koskinen told Phys.org. "Cardboard could be also used in the same applications as other porous carbon materials, such as in batteries or in filtering. However, more suitable would be applications that make use of the tunable mechanical properties. With scalable fabrication techniques, the tunability could perhaps even be transferred to macroscale objects made of graphene cardboard."

To read more, click here.