Pin It

The flip of a light switch – a nano-scale light switch – may some day dramatically boost the speed of data transmission, from streaming movies to accelerating the most data-intense computation. Today, information flow in a computer is based on electrical pulses. But if an electrical signal could instead control a light switch, the "ones and zeros" that give data meaning could race through computer circuits at ten times the current speed. A ten-fold increase in speed would mean a similar spike in the volume of information that can be processed.

Of course, electrical signals are used to modulate light in the optical fibers that transmit massive amounts of data around the corner and around the world. But harnessing light to boost communication between chips within a computer circuit has proved an elusive goal. At the scale of computer circuitry, materials such as silicon can't absorb light efficiently, and devices that can perform well are too bulky to integrate into a chip.

So excitement runs high that graphene, a material under intense study for only a decade, might do the trick. Single atom-thick carbon graphene crystals absorb all wavelengths of light, and at certain voltages, electrical pulses can turn the material's light absorption on and off – the key to data transmission. This trait and graphene's nano-size "footprint" make it an ideal candidate for ultra-miniature optical devices that could be installed by the thousands on a chip to control traffic flow.

To read more, click here.