Pin It

Researchers from Brown University have shown experimentally that a boron-based competitor to graphene is a very real possibility.

Graphene has been heralded as a wonder material. Made of a single layer of carbon atoms in a honeycomb arrangement, graphene is stronger pound-for-pound than steel and conducts electricity better than copper. Since the discovery of graphene, scientists have wondered if boron, carbon's neighbor on the periodic table, could also be arranged in single-atom sheets. Theoretical work suggested it was possible, but the atoms would need to be in a very particular arrangement.

Boron has one fewer electron than carbon and as a result can't form the honeycomb lattice that makes up graphene. For boron to form a single-atom layer, theorists suggested that the atoms must be arranged in a triangular lattice with hexagonal vacancies—holes—in the lattice.

"That was the prediction," said Lai-Sheng Wang, professor of chemistry at Brown, "but nobody had made anything to show that's the case."

Wang and his research group, which has studied boron chemistry for many years, have now produced the first experimental evidence that such a structure is possible. In a paper published on January 20 in Nature Communications, Wang and his team showed that a cluster made of 36 boron atoms (B36) forms a symmetrical, one-atom thick disc with a perfect hexagonal hole in the middle.

To read more, click here.