Pin It

Superconducting materials exhibit unexpected behaviors when subjected to magnetic fields or high pressures –discoveries that have implications for controlling electrons in those special materials. According to two studies, one conducted at the Paul Scherrer Institute in Switzerland with collaborators at Los Alamos National Laboratory and a second at Los Alamos in collaboration with the Sungkyunkwan University in South Korea, the superconducting material Cerium-Colbalt-Indium5 reveals new secrets about how superconductivity and magnetism can be related.

Superconductivity and magnetism are normally seen as rivals – superconducting and magnetic electrons order themselves in very different ways. Like spinning tops, electrons in superconductors form pairs of tops, one spinning counterclockwise and one spinning clockwise. Together, these pairs move freely to conduct electrical current with zero resistance. Magnetic electrons, in contrast, lock themselves into a rigid arrangement that does not move. Two papers recently published in the journal Nature Physics show that electrons in Cerium-Colbalt-Indium5 are both superconducting and magnetic at the same time.

In an experiment conducted at the Paul Scherrer Institute, researchers observed an entirely new form of superconductivity, one in which electrons form pairs with spinning tops moving clockwise and counterclockwise as well as pairs spinning in the same direction. This surprising new form of superconductivity appeared only when electrons were both superconducting and magnetic. As these researchers showed, the ordered arrangement of the magnetic electrons can be manipulated by modifying the direction of an applied magnetic field.

To read more, click here.