Pin It

Bringing together soft, malleable living cells with hard, inflexible electronics can be a difficult task. UChicago researchers have developed a new method to face this challenge by utilizing microscopic structures to build up bioelectronics rather than creating them from the top down—creating a highly customizable product.

Researchers are very interested in creating electronics that can interface seamlessly with ; these could be used as tools to investigate how cells and tissues work or as —such as tissue stimulations to treat Parkinson's disease or cardiac problems.

Typically, such bioelectronics are created through a "top-down" approach, with the electronics already put together and made smaller to fit with the biological system. But in a new study published in Nature Nanotechnology, Assoc. Prof. Bozhi Tian and his team use a different method. The researchers took a "bottom-up" approach, in which small building blocks called micelles come together to form carbon-based bioelectronics.

To read more, click here.