Building on a decade of advances in the understanding of neutron production and hot-spot physics, researchers at the National Ignition Facility are pursuing magnetized fusion fuel as a potentially disruptive way to boost the performance of laser-driven implosion.

Creating and maintaining self-sustaining nuclear fusion reactions in the laboratory, such that energy output exceeds energy input, continues to challenge physicists worldwide. While some experiments have demonstrated significant energy release from fusion reactions, none have yet reached the ignition and high-fusion-energy-gain regime—the point at which “runaway” self-heating occurs. The problem is one of confinement: fusing enough nuclei for the reaction to become self-sustaining means bottling up a superheated plasma that wants desperately to expand and cool.

To read more, click here.