In 1963, the mathematician Roy Kerr found a solution to Einstein’s equations that precisely described the space-time outside what we now call a rotating black hole. (The term wouldn’t be coined for a few more years.) In the nearly six decades since his achievement, researchers have tried to show that these so-called Kerr black holes are stable. What that means, explained Jérémie Szeftel, a mathematician at Sorbonne University, “is that if I start with something that looks like a Kerr black hole and give it a little bump” — by throwing some gravitational waves at it, for instance — “what you expect, far into the future, is that everything will settle down, and it will once again look exactly like a Kerr solution.”

The opposite situation — a mathematical instability — “would have posed a deep conundrum to theoretical physicists and would have suggested the need to modify, at some fundamental level, Einstein’s theory of gravitation,” said Thibault Damour, a physicist at the Institute of Advanced Scientific Studies in France.

In a 912-page paper posted online on May 30, Szeftel, Elena Giorgi of Columbia University and Sergiu Klainerman of Princeton University have proved that slowly rotating Kerr black holes are indeed stable. The work is the product of a multiyear effort. The entire proof — consisting of the new work, an 800-page paper by Klainerman and Szeftel from 2021, plus three background papers that established various mathematical tools — totals roughly 2,100 pages in all.

The new result “does indeed constitute a milestone in the mathematical development of general relativity,” said Demetrios Christodoulou, a mathematician at the Swiss Federal Institute of Technology Zurich.

To read more, **click here.**