Pin It

Since Michelson and Morley’s famous experiment to detect the “luminiferous aether,” optical interferometry has offered valuable tools for studying fundamental physics. Nowadays, cutting-edge applications of the technique include its use as a high-precision ruler for detecting gravitational waves (see Focus: The Moon as a Gravitational-Wave Detector) and as a platform for quantum computing (see Viewpoint: Quantum Leap for Quantum Primacy). But as methods for cooling and controlling atoms have advanced, a new kind of interferometer has become available, in which light waves are replaced by matter waves [1]. Such devices can measure inertial forces with a sensitivity even greater than that of optical interferometers [2] and could reveal new physics beyond the standard model. In a new experiment, Jason Hogan and his colleagues at Stanford University have addressed one of the obstacles that have limited the potential of matter-wave interferometers until now: inefficient coupling between the atoms that constitute the matter waves and the light pulses used to manipulate them [3]. Their technique could lead to matter-wave interferometers sensitive enough to detect fluctuations in Earth’s rotation rate or manifestations of general relativistic effects such as the space-time “torsion” predicted by some alternative theories of gravity.

To read more, click here.

free live sex indian sex cam live rivsexcam il miglior sito di webcam live sex chat with cam girls Regardez sexe shows en direct