Text Size
Facebook Twitter More...

Bottom line - the price of locality is slavery, no free will. Free will is maximized in the nonlocal universe seems to be the conclusion of this paper.

Jonathan Barrett
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K.
Nicolas Gisin
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
(Dated: August 24, 2010)

If nonlocality is to be inferred from a violation of Bell’s inequality, an important assumption is that the measurement settings are freely chosen by the observers, or alternatively, that they are random and uncorrelated with the hypothetical local variables. We study the case where this assumption is weakened, so that measurement settings and local variables can be at least partially correlated. We demonstrate a connection between this type of model and classical communication models, and a connection with models that exploit the detection efficiency loophole. We show that even if Bob enjoys full free will, if Alice lacks a single bit of free will - in the sense that the mutual information between local variables and her measurement setting is one bit - then all correlations obtained from projective measurements on a singlet can be reproduced by local means.

Quantum nonlocality, whereby particles appear to in- fluence one another instantaneously even though they are widely separated in space, is one of the most remarkable phenomena known to modern science [1–3]. Historically, this peculiar prediction of quantum theory triggered many debates and even doubts about its validity [4]. Today, it is a well established experimental fact [5], although the profound implications for our world view remain controversial. In order to demonstrate quantum nonlocality, measurements are performed on separated entangled quantum systems, and it is shown that the measurement outcomes are correlated in a manner that cannot be accounted for by local variables. In order to conclude that nonlocality is exhibited, it is crucial for the analysis that the choices of which measurement to perform are freely made by the experimenters. Indeed, it is well known that if the measurement settings are not freely chosen, but depend on the hypothetical local variables, then all correlations can be reproduced. Here we reverse the argument. We take for granted that quantum correlations can be produced and ask, how much free will must the experimenters be assumed to have in order to rule out an explanation in terms of local variables [6]? We prove that if an experimenter Alice misses one single bit of free will - that is if the mutual information between her choice and the local variables is one bit - then correlations between two qubits in a singlet state can be reproduced by local variables, and no demonstration of nonlocality is possible. ...

This is a truly remarkable result. It means that if Al- ice is lacking “a single bit of free will”, then all correlations from projective measurements on a singlet state can be explained with local variables. If Alice delegates the choices of her inputs to a random number generator, this implies that if the random number generator has only a slight correlation to the hypothetical local variable λ, then a demonstration of nonlocality using a singlet state is impossible. ...

Let us emphasize the change in paradigm since the old EPR paper [4]. If, contrary to EPR, one accepts non- locality as a fact, then not only can one develop pow- erful applications in quantum information science, like device-independent quantum key distribution [12] and random number generators [21], but moreover one can upper bound the lack of free will of the players ! Conversely, if one player lacks a single bit of free will, then no demonstration of nonlocality with projective measurements on the singlet state is possible.


Category: MyBlog

Categories ...

't Hooft 100 Year Star Ship Abner Shimony accelerometers action-reaction principle Aephraim Sternberg Alan Turing Albert Einstein Alpha Magnetic Spectrometer American Institute of Physics Andrija Puharich Anthony Valentin Anton Zeilinger Antony Valentini anyon Apple Computer Artificial Intelligence Asher Peres Back From The Future Basil Hiley Bell's theorem Ben Affleck Ben Libet Bernard Carr Bill Clinton black body radiation Black Hole black hole firewall black hole information paradox black holes Bohm brain waves Brian Josephson Broadwell Cambridge University Carnot Heat Engine Central Intelligence Agency CIA Clive Prince closed time like curves coherent quantum state Consciousness conservation laws Cosmic Landscape Cosmological Constant cosmology CTC cyber-bullying Dancing Wu Li Masters Dark Energy Dark Matter DARPA Daryl Bem David Bohm David Deutsch David Gross David Kaiser David Neyland David Tong de Sitter horizon Dean Radin Deepak Chopra delayed choice Demetrios A. Kalamidas Demetrios Kalamidas Dennis Sciama Destiny Matrix Dick Bierman Doppler radars E8 group Einstein's curved spacetime gravity Einstein's happiest thought electromagnetism Eli Cartan EMP Nuclear Attack entanglement signals ER=EPR Eric Davis Ernst Mach ET Eternal Chaotic Inflation evaporating black holes Facebook Faster-Than-Light Signals? fictitious force firewall paradox flying saucers FQXi Frank Tipler Frank Wilczek Fred Alan Wolf Free Will G.'t Hooft Garrett Moddel Gary Zukav gauge theory general relativity Geometrodynamics Gerard 't Hooft Giancarlo Ghirardi God Goldstone theorem gravimagnetism gravity Gravity - the movie gravity gradiometers gravity tetrads Gravity Waves Gregory Corso gyroscopes hacking quantum cryptographs Hagen Kleinert Hal Puthoff Hawking radiation Heisenberg Henry Stapp Herbert Gold Higgs boson Higgs field hologram universe Horizon How the Hippies Saved Physics I.J. Good ICBMs Igor Novikov inertial forces inertial navigation Inquisition Internet Iphone Iran Isaac Newton Israel Jack Sarfatti Jacques Vallee James F. Woodward James Woodward JASON Dept of Defense Jeffrey Bub Jesse Ventura Jim Woodward John Archibald Wheeler John Baez John Cramer John S. Bell Ken Peacock Kip Thorne Kornel Lanczos La Boheme Laputa Large Hadron Collider Lenny Susskind Leonard Susskind Levi-Civita connection LHC CERN libel Louis de Broglie Lubos Motl LUX Lynn Picknett M-Theory Mach's Principle Mae Jemison Making Starships and Star Gates Martin Rees Mathematical Mind MATRIX Matter-AntiMatter Asymmetry Max Tegmark Menas Kafatos Michael Persinger Michael Towler microtubules Milky way MIT MOSSAD multiverse NASA Nick Bostrum Nick Herbert Nobel Prize nonlocality Obama organized-stalking Origin of Inertia P. A. M. Dirac P.K.Dick P.W. Anderson Paranormal parapsychology Paul Werbos Perimeter Institute Petraeus Physical Review Letters Physics Today Post-Quantum Physics pre-Big Bang precognition presponse PSI WARS Psychic Repression qualia Quantum Chromodynamics quantum computers quantum entanglement quantum field theory quantum gravity Quantum Information Theory Quantum Theory RAF Spitfires Ray Chiao Red Chinese Remote Viewing retrocausality Reviews of Modern Physics Richard Feynman Richard P. Feynman Rindler effect Robert Anton Wilson Robert Bigelow Roger Penrose rotating black holes Roy Glauber Rupert Sheldrake Russell Targ Ruth Elinor Kastner S-Matrix Sagnac effect Sam Ting Sanford Underground Research Facility Sarfatti Lectures in Physics Scientific American Second Law of Thermodynamics Seth Lloyd signal nonlocality Skinwalker Ranch social networks space drive space-time crystal SPECTRA - UFO COMPUTER spontaneous broken symmetry SRI Remote Viewing Experiments Stanford Physics Stanford Research Institute Star Gate Star Ship Star Trek Q Stargate Starship Stephen Hawking Steven Weinberg stretched membrane string theory strong force gluons Stuart Hameroff superconducting meta-material supersymmetry symmetries telepathy Templeton The Guardian Thought Police time crystal time travel topological computers Topological Computing torsion UFO Unitarity unitary S-Matrix false? Unruh effect Uri Geller VALIS virtual particle Virtual Reality Warp Drive weak force Wheeler-Feynman WIMP WMAP WMD world crystal lattice wormhole Yakir Aharonov Yuri Milner