I conjecture (not in Tamara's PhD) that on our observer-dependent future horizon:
1) Our future horizon is the hologram computer screen and it is the Wheeler-Feynman total absorber.
2) All matter field fibers in the 3D + 1 bulk including the gravity field inside our future horizon - a closed surrounding non-bounding 2D surface enclosing topological geometrodynamical field monopole singularities - one per pixel on the future horizon - are retro-causal hologram image projections back from our future horizon. 
3) The quantum field theory or, perhaps, string theory on the horizon hologram is generally non-Abelian anyonic.
4) Note the issue of the red and blue shifts is very tricky depending on the state of acceleration of the absorber detectors.
The cosmological red shift z is, for the de Sitter (dS) metric relative to us at proper time zero
1 + z = (wavelength at co-moving absorber)/(wavelength at comoving emitter) = e^/(proper time at absorber) ---> infinity at our future horizon.
To see the connection with the conformal time diagram Fig 1.1
Conformal time tau = /^-1/2[1 - e^-/^1/2proper time)]
infinite proper time at our future horizon is finite conformal time 
tau = /^-1/2
The conformally flat dS metric is
ds^2 = (1 - /^1/2tau)^-1[Minkowski metric]
---> infinity at the future event horizon consistent with zero frequency.
This is for co-moving observers in the accelerating Hubble expansion flow.
Static LNIF observers see something entirely different at fixed r where
g00 = 1 - / ^2 = -1/grr
static LNIFs see an infinite blue shift of light coming at r = 0 as they adiabatically approach r --- /^-1/2
indeed, their real tensor covariant acceleration ~ Unruh temperature needed to stay at fixed r is
g(r) = 2c^2/ (1 - / ^2)^-1/2 ---> infinity at the future horizon.
This is an example of horizon complementarity - one has to specify precisely the total experimental arrangement to get sensible answers not only in quantum theory, but also in Einstein's theory of curved space-time gravity.
This is not an April Fool joke, though perhaps I am mistaken.