corrected second draft

On Sep 19, 2011, at 10:58 AM, Kim Burrafato wrote:

http://arxiv.org/abs/1109.3542

Quantum entanglement from the holographic principle

Jae-Weon Lee

(Submitted on 16 Sep 2011)

*It is suggested that quantum entanglement emerges from the holographic principle stating that all of the information of a region (bulk bits) can be described by the bits on its boundary surface. There are redundancy and information loss in the bulk bits that lead to the nonlocal correlation among the bulk bits. Quantum field theory overestimates the independent degrees of freedom in the bulk. The maximum entanglement in the universe increases as the size of the cosmic horizon and this could be related with the arrow of time and dark energy.*

Comments: 3 page, 1 figure

Subjects: High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); Quantum Physics (quant-ph)

Cite as: arXiv:1109.3542v1 [hep-th]

Submission history

From: Jae-Weon Lee Prof. [view email]

[v1] Fri, 16 Sep 2011 07:50:40 GMT (53kb)

On Sep 19, 2011, at 11:09 AM, JACK SARFATTI wrote:

Yes, he is essentially saying what I have also been saying, except the horizon must be our retrocausal future event horizon not our past particle horizon.

The maximum entanglement in the universe increases as the size of the cosmic horizon and this could be related with the arrow of time and dark energy.

This idea is in my Journal of Cosmology paper as well Vol 14, April 2011 as well as the archive paper with Creon Levit.

Tamara Davis's figs 1.1 & 5.1 modified - bottom shows increase of area-entropy of our future horizon explaining time's arrow.

dark energy density = hc/Lp^2(Area of our future horizon)

OK some more comments on the paper from Korea. It's a good paper, essentially correct. I actually discussed some of these ideas last night in a brief pop way on Coast to Coast radio before seeing this paper that Kim sent this morning.

The paper's logic falls apart at the end mainly because Lee is not clear that the horizon is in our future not in our past. Also Lee talks about a black hole horizon that we are always outside of that corresponds to the AdS/CFT conjecture / < 0 (dark matter). However we are always inside our future cosmological event horizon and that requires some kind of dS/CFT relation / > 0 (dark energy).

Our future horizon must be a retrocausal hologram screen whose 2D pixels project 3D voxels "back from the future" e.g. Aharonov's "post selection" - see new paper by Maurice Alexis de Gosson de Varennes <This email address is being protected from spambots. You need JavaScript enabled to view it.>

Lee says no signal nonlocality in Antony Valentini's sense, but I don't think that's correct of course. Lee does not consider entangled macro-quantum coherent Glauber states from the Higgs-Goldstone spontaneous vacuum symmetry breaking, so his model is incomplete. The over-complete non-orthogonality of the Glauber states manifestly violates the Born probability rule from P.W. Anderson's "More is different" "phase rigidity" giving signal nonlocality. However, as Henry Stapp points out, and I independently (e.g., B. J. Carr's review June 2008,) such a property is an extension of orthodox quantum theory to a larger theory like general relativity is larger than special relativity with Valentini's "signal nonlocality" analogous to "curvature."

see attached pdf Signal Nonlocality 91411 in Library Resources

Lee wrote:

*"The nonlocal quantum correlation (quantum entangle- ment) is nowadays widely treated as the valuable physical resource exploited in quantum information processing ap- plications such as quantum key distribution and quantum teleportation [1]. However, the origin of this mysterious phenomenon is unknown. ...
On the other hand, the holographic principle [2, 3], in- cluding the AdS/CFT correspondence [4], asserts a mys- terious connection between the physics in a bulk and quantum field theory (QFT) on its boundary surface. It claims that all of the information in a volume can be de- scribed by the degrees of freedom (DOF) on the bound- ary of the volume and the number of bits NB (times ln 2) involved in the description of the bulk must not exceed A/4, where A is the area of the boundary [5]. Re- cently, there are renewed interests in describing gravity with thermodynamics and holography ..
There is an unexpected similarity between entangle- ment and the holographic principle. For example, in gen- eral, entanglement entropy has an area law and the holo- graphic principle involves nonlocality by nature. Fur- thermore, it is possible to study black hole entropy us- ing entanglement entropy [8–12]. Ryu and Takayanagi proposed a holographic derivation of the entanglement entropy using the AdS/CFT correspondence [13]. In- terestingly, a superluminal (i.e., faster than light) com- munication is impossible even with the quantum nonlo- cality. These counterintuitive results imply that gravity and quantum mechanics somehow cooperate not to vio- late each other and there is a deep connection between them. ...
In this paper, we suggest that quantum entanglement emerges from holographic principle. ’t Hooft proposed that quantum mechanics has a deterministic theory in- volving local information loss [14]. Zeilinger and Brukner [15, 16] suggested that every well-designed experiment tests some proposition which may return a yes/no an- swer, and quantum randomness arises from this discrete- ness of information. Inspired by the digital nature of the holographic principle we assume that both of the bulk and the boundary DOF can be treated as binary vari- ables. We also restrict ourselves to pure states for sim- plicity. Introducing mixed states does not change main conclusions. ...
We saw that quantum entanglement is unavoidable, once we accept the holographic principle. The conven- tional QFT overestimates DOF in the bulk than are ac- tually present. Then, how can we reconcile this factor with the great success of the conventional QFT? Analy- sis in this work indicates that QFT is valid only for small scales (like particle accelerator scales) compared to the horizon size. This means that, for example, to study cos- mology at the large scale we should not fully trust the result of the conventional QFT. Dark energy could be a good example. It is well known that the zero point energy calculated from the quantum vacuum fluctuation is too large compared to the observed dark energy. However, if we invoke the holographic principle and consider only the actual independent DOF of O(R2), the zero point energy can be comparable to the observed dark energy [19] and this could resolve the cosmological constant problem. In other words, there are only O(R2) independent harmonic oscillators in the bulk QFT. Our theory predicts that in the bulk there should be always entangled states. The inside observer can make some of the quantum states sep- arable but not all of the states at the same time, because the inside observer cannot remove the redundancy. Another interesting implication of our theory is that there are O(R) redundancy in the bulk bits and hence at least O(R) entanglement among the bits. This fact implies that the total entanglement inside an expanding horizon increases as time goes. If the causal horizon is the cosmic event horizon expanding with time, we can say that this increase of entanglement is related to the arrow of time [20]. Note that this entanglement is different from the entanglement between inside and outside DOF of the horizon which is usually of O(R2). ...
The nonlocality of quantum entanglement is also inti- mately related to that of the holographic principle. Since the size of the bulk bits are always larger than that of the corresponding boundary bits, some of the correlated bulk bits should be spatially further separated than the boundary bits do. Thus, even if the boundary bits have the locality, the corresponding bulk bits apparently do not. However, even in this case, entanglement does not allow superluminal communication, because the inside observer cannot choose the specific outcome of her/his measurements. Neither the outside observer do influence the bulk bits faster than light. For a fixed outside ob- server seeing the causal horizons, due to a large redshift, it takes infinite time for observer’s influence to reach the horizons. Alternatively, if the outside observer free falls to reach the horizon, the horizon will disappear and the observer cannot access the boundary bits properly. Both of the holography and entanglement are observer depen- dent phenomena."*